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We consider an implicit a posteriori error estimation technique for the adaptive
solution of the Maxwell equations with Nédélec edge finite element methods on
three-dimensional domains. On each element of the tessellation an equation for the
error is formulated and solved with a properly chosen local finite element basis. The
discrete bilinear form of the local problems is shown to satisfy an inf-sup condi-
tion which ensures the well posedness of the error equations. An adaptive solution
algorithm is developed based on the obtained error estimates. The performance of
the method is tested on various problems including non-convex domains with non-
smooth boundaries. The numerical results show that the estimated error, computed
by the implicit a posteriori error estimation technique, correlates well with the ac-
tual error. On the meshes generated adaptively with the help of the error estimator,
the achieved accuracy is higher than on globally refined meshes with comparable
number degrees of freedom. Moreover, the rate of the error convergence on the
locally adapted meshes is faster than that on the globally refined meshes.
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1 Introduction

In many real life problems (for example, scattering problems, design of optical
fibers and antennas, gas and oil exploration) it becomes increasingly important
to solve the full set of the Maxwell equations in complex three-dimensional
domains. Due to the complexity of the domains, the solution of the Maxwell
equations frequently has limited regularity, such as singularities at corners
and non-convex edges [17], and efficient solution methods require adaptive
techniques in order to capture detailed structures.

A posteriori error estimation techniques to control the adaptation process in
finite element methods have become popular tools for the numerical solution
of partial differential equations, see e. g. [2,7,8,29,43], and are also important
for the Maxwell equations. A crucial requirement for a posteriori error es-
timation techniques is that they provide an accurate estimate of the error
throughout the finite element mesh. The a posteriori error estimate is then
used to generate meshes locally finer in areas where the mesh resolution is
not sufficient to achieve the required accuracy. For wave type problems as the
Maxwell equations, however, since the major part of the computational error
arises from boundary singularities, this is possible only if we use a sufficiently
fine mesh compared to the wave length. In this case, the major part of the
computational error arises from the boundary singularities. Otherwise, when
the mesh is not sufficiently fine, the pollution effect can make the a posteri-
ori error estimates unreliable [4] and a further careful analysis is needed to
estimate the pollution error separately [5]. There are basically two types of a
posteriori error estimation methods, namely explicit and implicit techniques.

Explicit error estimation techniques provide an upper bound for the local error
based on the numerical solution (see e. g. [6,7,43]), but generally contain an
unknown constant which often is not sharp and do not provide computable
error bounds. There are several techniques to obtain explicit bounds for the
unknown constant (see e. g. [14]), but in most applications the estimates are
somewhat pessimistic, hence the resulting estimators tend to be unrealistic
and fail to detect the more subtle nuances of the specific problem. Several
applications of adaptive methods with an explicit error estimation technique
for the Maxwell equations can be found in [9,11,15,32,33].

Implicit error estimators seek to avoid these disadvantages by retaining the
structure of the original equation as much as possible. The idea of implicit
a posteriori error estimates is to formulate local problems for the error func-
tion, either over a single element or over a small patch of elements, with
suitably chosen boundary conditions and then solve them with an appropri-
ate finite element method [1,2]. This technique can provide reliable estimates,
but one has to solve additional, small boundary value problems. Beyond the
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standard elliptic case these techniques have been applied for flow problems in
two-dimensional domains [19] and for the Maxwell equations with a coercive
bilinear form [10]. The numerical experiments in [12,31] for the time harmonic
Maxwell equations suggest the implicit error estimation technique as a promis-
ing approach. Moreover, in [18,34] equilibration techniques have been applied
in case of higher order elements, but a precise analysis of this method is still
lacking.
In [25,24] we developed an implicit a posteriori error estimation technique for
the time harmonic Maxwell equations on a cubic mesh and proved well posed-
ness of the local problems (without any post-processing) with suitably chosen
boundary conditions. We also pointed out that this gives a lower bound for
the analytic error.

The main goal of this article is to show that the implicit error estimation tech-
nique can successfully be applied in an adaptive mesh refinement algorithm.
We perform the adaptation on a tetrahedral mesh, which requires some modi-
fications in the analysis compared to [25,24]. As a natural choice for the finite
element spaces we use the Nédélec first order edge basis functions of the first
type [28]. Then we define a weak formulation for the error equation in each
element, which is solved with a finite element method. These local problems
are solved with modified second order Nédélec elements where the linear part
is removed. The use of higher order elements to solve the local error equations
is essential to obtain a good approximation of the error and also reduces the
pollution effect discussed in [4,5]. In various test cases (on non-convex domains
with singular solutions) we test the performance of the implicit error estima-
tion technique. Provided that the mesh resolution is fine enough we show that
the method is capable of detecting regions with a relatively large error and,
based on this information and using an adaptive mesh generation technique,
we are able to achieve a smaller error on adaptively generated meshes than on
globally refined meshes. Also, the reduction of the error using the adaptation
procedure based on the implicit error estimation technique is faster than that
on globally refined meshes.

An important issue for adaptive methods is how to adapt a mesh while main-
taining mesh quality. In particular, it is important to choose a selection algo-
rithm for the subdomains where finer elements are needed. Here we would like
to mention that there is no optimal algorithm for marking elements for re-
finement and several options are discussed in Section 5. For more information
about refinement strategies we refer to [3,41,20,35,40]. In all our numerical ex-
periments we use the Centaur mesh generator [16] with so called source based
mesh adaptation (see Section 5) depending on the selection of a fixed fraction
of elements for refinement. This approach tries to make the local mesh finer
in specified regions while preserving the high quality of the mesh. One of the
beneficial properties of the Centaur mesh generator is that it avoids elements
with large dihedral angles, which is important for achieving accuracy.
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This article is organized as follows: in Section 2 we present the Maxwell equa-
tions, their weak formulation and define the finite element discretization. Sec-
tion 3 describes the implicit error estimation technique with a properly chosen
local finite element space. The inf-sup condition for the local variational for-
mulation of the error equation is proven in Section 4 using a Poincaré type
inequality (Lemma 6). A similar result for quasi uniform subdomains is avail-
able in [22], Lemma 4.1. We also investigate the dependence on the frequency
of the parameters in the estimates. In Section 5 we discuss several adaptation
strategies. The performance of the implicit error estimation technique is in-
vestigated for various test cases including non-convex domains in Section 6.
Finally, conclusions are drawn in Section 7.

2 Mathematical formalization

Consider the time harmonic Maxwell equations for the electric field E :Ω→ R3

with perfectly conducting boundary conditions:

curl curl E − k2E = J in Ω, (2.1a)

E × ν = 0 on ∂Ω, (2.1b)

where Ω ⊂ R3 is a Lipschitz domain with outward normal vector ν and J ∈
[L2(Ω)]3 a given source function. The wave number k relates to the frequency
ω and the velocity of the wave propagation c as k = ω

c
. The velocity of wave

propagation is given as c = 1√
εµ

, where the dielectric permittivity ε = ε0εr

and the magnetic permeability µ = µ0µr are material properties. The free
space dielectric permittivity and magnetic permeability are defined by ε0 =

1
36π

10−9 Fm−1 and µ0 = 4π10−7 Hm−1, respectively [27]. The dimensionless
parameters εr and µr are material dependent and called relative permittivity
and relative permeability, respectively.

In this article we consider the dimensionless Maxwell equations to avoid prob-
lems with floating point arithmetic when working with very large numbers.
For the derivation of the dimensionless Maxwell equations we refer to e. g. [27].

In the subsequent derivations we will need the following Hilbert space corre-
sponding to the Maxwell equations

H(curl, Ω) = {u ∈ [L2(Ω)]3 : curl u ∈ [L2(Ω)]3},

which is equipped with the curl norm

‖u‖curl,Ω = (‖u‖2
[L2(Ω)]3 + ‖curl u‖2

[L2(Ω)]3)
1/2. (2.2)

The differential operator curl is understood in a distributional sense. While
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Fig. 1. The reference tetrahedron (left) and tetrahedron in physical space (right).

analyzing (2.1), usually a subspace of H(curl, Ω) is used, namely

H0(curl, Ω) = {u ∈ H(curl, Ω) : ν × u|∂Ω = 0},

where ν × u|∂Ω denotes the extension of the tangential trace to non smooth
functions [27].

For the weak formulation of (2.1) we introduce the following bilinear form

B : H(curl, Ω)×H(curl, Ω) → R

with

B(u, v) = (curl u, curl v)− k2(u,v).

Similarly, the bilinear form BK is defined in the same way but now on the
subdomain K ⊂ Ω (instead of Ω). We will denote by (·, ·)K and (·, ·)∂K the L2

scalar products on K and ∂K, respectively. In the same way, the curl norm
on K is defined by

‖u‖curl,K = (‖u‖2
[L2(K)]3 + ‖curl u‖2

[L2(K)]3)
1/2.

Using the above notation the weak formulation of the time harmonic Maxwell
equations (2.1) is: for a given source function J , find E ∈ H0(curl, Ω) such
that for all v ∈ H0(curl, Ω) the following relation is satisfied

B(E,v) = (J ,v). (2.3)

2.1 Finite elements in H(curl): First order edge elements

For the numerical solution of (2.3) we use the H(curl) conforming edge finite
elements proposed by Nédélec [28] for tetrahedral elements.
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Table 1
Edge and face enumeration.

Edge # Node i1 Node i2

1 1 2

2 1 3

3 1 4

4 2 3

5 4 2

6 3 4

Face # Node i1 Node i2 Node i3

1 2 3 4

2 1 3 4

3 1 2 4

4 1 2 3

It is convenient to define the finite elements first on a reference element, which
in our case is a tetrahedron K̂ with nodes X̂1, X̂2, X̂3, X̂4, see Figure 1, where

X̂1 = (0, 0, 0), X̂2 = (1, 0, 0), X̂3 = (0, 1, 0), X̂4 = (0, 0, 1).

The first order Nédélec elements are defined on the reference element K̂ as

W 0
i = (Li1∇Li2 − Li2∇Li1)li, i = 1, . . . , 6,

where Lj is the Lagrange basis function corresponding to node j of K̂, li the
length of edge i, and i the edge number associated with the nodes i1 and i2
(see Table 1). In more explicit form this basis reads

W 0
1 = (1− η − ζ, ξ, ξ)T , W 0

2 = (η, 1− ξ − ζ, η)T ,

W 0
3 = (ζ, ζ, 1− ξ − η)T , W 0

4 =
√

2 (−η, ξ, 0)T ,

W 0
5 =

√
2 (ζ, 0,−ξ)T , W 0

6 =
√

2 (0,−ζ, η)T ,

with (ξ, η, ζ) denoting the local coordinates on K̂.

A detailed construction of Nédélec basis functions can be found, for example,
in [27]. Next, we introduce a tetrahedral tessellation Th of Ω with N elements
and Ne edges. The basis defined on the reference element K̂ can be transformed
to an arbitrary tetrahedron K ∈ Th using the isoparametric mapping

DK : (ξ, η, ζ) ∈ K̂ 7→ (x, y, z) =
4∑

i=1

XiLi(ξ, η, ζ) ∈ K, (2.4)

provided that this mapping is a diffeomorphism. Here Xi = (xi, yi, zi) denote
the nodes of K. We numerate the nodes in K̂ and K such that Xi = DK(X̂i).
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It is well known that the covariant transformation preserves line integrals
under a change of coordinates [27,36], so that the basis functions for a given
tetrahedron K can be defined as

wj(x, y, z) = (dD−1
K )T W 0

j(ξ, η, ζ), j = 1, . . . , 6, (2.5)

where dDK is the Jacobian of the transformation DK .

We denote by Wh the space of Nédélec first order edge basis functions:

Wh = span {wj(x, y, z) | all edges j = 1, . . . , Ne in Th} ,

where each basis function wj(x, y, z) is defined with respect to edge j according
to (2.5).

Remark 1 The tangential components of the Nédélec edge basis functions are
continuous across the interface of two neighboring elements. Hence, the space
Wh is a conforming subspace of H(curl, Ω). For details see Lemma 5.35 and
the preceding text in [27].

The discretized version of (2.3) reads:

For given source function J , find Eh ∈ Wh, such that for all W ∈ Wh the
following relation is satisfied

B(Eh,W ) = (J , W ). (2.6)

3 Implicit error estimation

In this section we formulate the implicit error estimation method to estimate
the error in each element of the domain. Also, appropriate local basis functions
and boundary conditions are considered for the numerical solution of the local
problems.

3.1 Formulation of the local error equation

Assume that Eh is a numerical solution computed using first order Nédélec
elements. We aim at estimating the computational error eh = (E −Eh)|K on
each element K ∈ Th, with Th being the finite element tessellation. For this
we state a variational problem for the local error equation (see [25,24]) on the
element K as follows: Find eh ∈ H(curl, K) such that for all v ∈ H(curl, K)
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the following relation is satisfied

BK(eh, v) = (curl eh, curl v)K − k2(eh,v)K

= (curl (E −Eh), curl v)K − k2(E −Eh,v)K (3.1)

= (curl E, curl v)K − k2(E,v)K − ((curl Eh, curl v)K − k2(Eh,v)K)

= (curl curl E,v)K − (ν × curl E,v)∂K − k2(E,v)K −BK(Eh,v)K

= (J ,v)K − (ν × curl E, v)∂K −BK(Eh, v),

where a Green’s identity is applied in the fourth line and (2.1a) is used in
the last line. In order to get a computable right hand side in (3.1) we use the
approximation

ν × curl E ≈ ν × c̃url E on interelement faces, (3.2)

instead of using the unknown exact value ν × curl E. A concrete form of this
approximation is given in (3.4). The quantity ν × curl E will henceforth be
called the natural boundary data. The following variational problem for the
error on element K can now be formulated:

For a given source function J and numerical solution Eh, find êh ∈ H(curl, K)
such that for all v ∈ H(curl, K) the following relation is satisfied

BK(êh, v) = (J , v)K − (ν × c̃url E, v)∂K −BK(Eh,v). (3.3)

3.2 Numerical solution of the local error equation

We will now give a discretized form of the local problem (3.3) which requires a
specific choice for the approximation (3.2) of the natural boundary conditions
and the finite element basis on element K.

3.2.1 Approximation of the natural boundary conditions

We first specify the approximation in (3.2). We introduce fj, the common face
of the two neighboring elements K and Kj, and νj the outward normal on
fj with respect to K. We approximate ν × curl E on fj with the average of
the tangential traces of the curl of the numerical approximation Eh on its two
sides K and Kj. That is we shall use the approximation

νj × curl E|fj
≈ 1

2
(νj ×

[
curl Eh|∂K∩fj

+ curl Eh|∂Kj∩fj

]
), (3.4)

which can be straightforwardly implemented.

8



Suppose that element K intersects with a portion of the boundary of the
domain Ω where perfectly conducting boundary conditions are imposed. If K
has at least one face on ∂Ω, we impose

ν × êh = 0 on ∂K ∩ ∂Ω. (3.5)

Here, it is assumed that the finite element approximation has been constructed
so that the perfectly conducting boundary conditions are satisfied exactly, for
details see [2].

3.2.2 Choice of the local basis

As discussed in [2], Section 3.4.2, the finite dimensional space used to discretize
the local error equations (3.3) has to be selected carefully. In case of elliptic
boundary value problems a different local basis is considered in [2] for the solu-
tion of the local error equations. It is advocated there that the use of different
basis functions than those used for the original problem might result in a bet-
ter approximation of the error. For the Maxwell equations it is also beneficial
to use higher order polynomials for the error equation which is explained by
the fact that the dominant term in the error is associated with polynomials of
a degree which is one order higher than those used to approximate the field,
see [12,31,34]. In our numerical experiments we observe similar phenomena. If
we use the first order Nédélec elements to solve the local problems then the
computed error does not describe the true error and leads to a non-physical
solution. If we use the full second order Nédélec elements again the obtained
results are poor, see Section 6.4. This is due to the linear part present in the
basis. Therefore, as a basis for the solution of the local error equations, we use
the second order Nédélec edge basis functions with the linear basis functions
removed.

Again, the basis functions for the local problem are first defined on a reference
tetrahedron and then with the covariant transformation (2.5) transformed to
the physical elements. There are eight face based basis functions defined as

φ0
1 = L2L3∇L4 − L2L4∇L3, φ0

2 = L2L3∇L4 − L3L4∇L2,

φ0
3 = L1L3∇L4 − L1L4∇L3, φ0

4 = L1L3∇L4 − L3L4∇L1,

φ0
5 = L1L2∇L4 − L1L4∇L2, φ0

6 = L1L2∇L4 − L2L4∇L1,

φ0
7 = L1L2∇L3 − L1L3∇L2, φ0

8 = L1L2∇L3 − L2L3∇L1,
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or, in more explicit form,

φ0
1 = (0,−ξζ, ξη)T , φ0

2 = (−ηζ, 0, ξη)T ,

φ0
3 = (0,−(1− ξ − η − ζ)ζ, (1− ξ − η − ζ)η)T , φ0

4 = (ηζ, ηζ, (1− ξ − η)η)T ,

φ0
5 = (−(1− ξ − η − ζ)ζ, 0, (1− ξ − η − ζ)ξ)T , φ0

6 = (ξζ, ξζ, (1− ξ − η)ξ)T ,

φ0
7 = (η(1− ξ − η − ζ), ξ(1− ξ − η − ζ), 0)T , φ0

8 = (ξη, (1− ξ − ζ)ξ, ξη)T .

These basis functions are transformed to a tetrahedron K ∈ Th with the
covariant transformation as

φj(x, y, z) = (dD−1
K )T φ0

j(ξ, η, ζ), j = 1, . . . , 8, (3.6)

with DK being the transformation defined in (2.4). This reduced finite element
space on an element K is denoted by N 2

2 (K):

N 2
2 (K) = span{φj}j=1,...,8.

For more details on the construction of second order Nédélec elements we refer
to [27,38].

3.2.3 Weak form of the local error equation

Using approximation (3.4) and the local basis N 2
2 (K) we obtain the discrete

form of the local error equation (3.3):

For a given source function J and numerical solution Eh, find êh ∈ N 2
2 (K)

such that for all w ∈ N 2
2 (K) the following relation is satisfied

(curl êh, curl w)K − k2(êh,w)K = (J ,w)K − (curl Eh, curl w)K

+k2(Eh,w)K − 1

2
(νj ×

(
curl Eh|K + curl Eh|Kj

)
, w)∂K ,

(3.7)

with suitable modification if there is at least one face in ∂K ∩ ∂Ω.

3.3 Properties of the local error estimator

We investigate the existence and uniqueness of the local error approximation
êh and state that it provides a lower bound (up to a constant) for the exact
error eh.
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3.3.1 Well posedness of the local error equation

Using a lifting operator we can associate an ēh to êh and define a function
ĴK ∈ [L2(Ω)]3 such that the well posedness of (3.3) is equivalent with that
of the variational problem: Find an ēh ∈ H(curl, K) such that for all v ∈
H(curl, K) the following relation is satisfied

BK(ēh,v) = (ĴK ,v). (3.8)

For the details we refer to [25,24], Section 3.3.1.

The well posedness of (3.8) is stated in the following:

Lemma 2 Assume that k is not a Maxwell eigenvalue on K in the sense that
only u = 0 ∈ H(curl, K) satisfies the relation

BK(u, v) = 0, ∀v ∈ H(curl, K).

Then the variational problem (3.8) has a unique solution.

For the proof we refer to [25,24], Section 3.3.3.

In order to apply Lemma 2 we need to ensure that k is not a Maxwell eigen-
value on K for all kind of tetrahedra arising in the finite element tessellation
Th. Instead of performing a detailed analysis for this, we rather ensure well
posedness for the discretized problems in (3.8) by proving an inf-sup condition,
which is discussed in Section 4.

3.3.2 Efficiency of the local error estimate

We state that the error estimate êh is efficient which means that it is bounded
by the analytic error plus higher order terms (for a precise definition see [13]).
For this we use the notation:

rK = J − curl curl Eh + k2Eh in K

for the residual within the subdomain K and

Rlj =
1

2
(νj ×

[
curl Eh|K − curl Eh|Kj

]
)

for the tangential jump of the curl at the common face lj of K and Kj. We
also introduce r̄ as the approximation of r in the finite element space N 2

2 (K).
Similarly, R̄ denotes the approximation of R on ∂K with the trace of functions
in N 2

2 (K) and the patch K̃ of K is defined as follows:

K̃ = {∪Ki : Ki ∈ Th, K ∩K i 6= ∅}.
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Theorem 3 If diamK = h < h∗
k

for some positive constant h∗ then the error
estimate êh is efficient,

‖êh‖2
curl,K ≤ C((1 + k2)2‖eh‖2

curl,K̃
+ h2‖r̄ − r‖2

[L2(K)]3 + h‖R̄−R‖2
[L2(∂K)]3),

(3.9)
where C does not depend on h.

The proof is postponed to Section 4.1.

4 Inf-sup condition for the implicit error estimator

In this section we show that the computations using the implicit error estima-
tion technique are stable in the sense that the local matrices in the bilinear
form BK in (3.3) remain uniformly well conditioned. Equivalently, we prove
that they satisfy the inf-sup condition uniformly.

Theorem 4 The bilinear form BK : N 2
2 (K)×N 2

2 (K) → R satisfies the inf-
sup condition uniformly in K; namely there is a positive constant h0 such that
for any non-degenerated family of tetrahedra Th and for any element K ∈ Th

with diam K < h0 and any u ∈ N 2
2 (K)

sup
v∈N 2

2 (K)

|BK(u,v)|
‖v‖curl,K

≥ min{1

2
, k2}‖u‖curl,K .

To prove this theorem we first give the explicit expression of the bilinear form
BK in terms of the original basis functions. Using (3.6) we obtain that for any
v =

∑8
i=1 viφi ∈ N 2

2 (K)

(v, v)K = (
8∑

i=1

viφi,
8∑

j=1

vjφj)K

= |det dDK |((dD−1
K )T

8∑

i=1

viφ
0
i , (dD−1

K )T
8∑

j=1

vjφ
0
j)K̂ .

(4.1)

Using (3.6) one can easily prove (see [27], Corollary 3.58) that

curlx,y,zφj =
1

det dDK

dDKcurlξ,η,ζφ
0
j , j = 1, 2, . . . , 8. (4.2)
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Therefore,

(curl v, curl v)K = (curlx,y,z

8∑

i=1

viφi, curlx,y,z

8∑

j=1

vjφj)K (4.3)

=
1

|det dDK |(dDKcurlξ,η,ζ

8∑

i=1

viφ
0
i , dDKcurlξ,η,ζ

8∑

j=1

vjφ
0
j)K̂ .

We also use the following two lemmas:

Lemma 5 Let us denote with T 1
h a non-degenerated family of tetrahedra such

that det dDK = 1 for all K ∈ T 1
h . Then there is a compact set D ⊂ R3×3 such

that 0 6∈ D and dDK ∈ D for all K ∈ T 1
h .

Proof We use the notion of the spectral norm which is given for an arbitrary
matrix D ∈ Rn×n as

‖D‖sp = sup
|ξ|=1

|Dξ|. (4.4)

We can establish the lemma if we prove that there are positive constants C1, C2

such that for any K ∈ T 1
h the following inequality holds:

C1 ≤ ‖dDK‖sp ≤ C2. (4.5)

Then the set
D = {dDK : K ∈ T 1

h }
is closed, and bounded with respect to the spectral norm (which is equivalent
with any norm in R3×3), moreover, the condition det dDK = 1,∀ K ∈ T 1

h

implies that 0 6∈ D.

Note that the condition det dDK = 1 implies that the volume of any tetrahe-
dron K is the same as that of K̂.

By contradiction, assume first that there is no constant C2 in (4.5), i.e. there
is a sequence Kn such that ‖dDKn‖sp > n. Then according to Lemma 5.10 in
[27]

n < ‖dDKn‖sp ≤ hKn

ρK̂

,

where hKn = diam Kn and ρK̂ denotes the radius of the largest ball contained

in the reference element K̂. Then limn→∞ hKn = ∞ while the condition on
the volume implies that ρKn remains bounded. This contradicts to the non-
degeneracy property of the meshes.

Assume now that there is no positive lower bound C1 in (4.5). Then according
to (4.4) there is a sequence Kn such that

max |eig dDKn | ≤ ‖dDKn‖sp = sup
|ξ|=1

|dDKnξ| < 1

n
, (4.6)
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where eig denotes an eigenvalue. Since the determinant is the product of the
eigenvalues, this is again a contradiction. ¤

Lemma 6 For any C > 0 there is a positive number h0 ∈ R+ such that for
every non-degenerated family of tetrahedra Th and for any element K ∈ Th

with diamK ≤ h0 and u2 ∈ N 2
2 (K) with u2⊥ ker curl, the following inequality

holds:

(curl u2, curl u2)K ≥ C(u2,u2)K . (4.7)

Proof: First, we decompose the transformation DK as follows: DK = DKD̃−1
K ◦

D̃K , where

D̃K =
1

3
√

det dDK

DK : K̂ → K̃ (4.8)

and

DKD̃−1
K = 3

√
det dDKI : K̃ → K, (4.9)

where the corresponding matrices are denoted with dDK , dD̃K and dDKdD̃−1
K ,

respectively, and det dD̃K = 1.
For a function u2 =

∑8
i=1 u2,iφi ∈ {span φj}j=1,...,8 we define

ũ2 : K̃ → R3 with ũ2 =
8∑

i=1

u2,iφ̃i,

where the basis functions φ̃i : K̃ → R3 (i = 1, 2, . . . , 8) are defined using (3.6)
with the transformation D̃K instead of DK . Using (4.1) for the linear mapping
DKD̃−1

K we obtain that

(u2, u2)K = |det dDK | 1

( 3
√

det dDK)2
(ũ2, ũ2)K̃ (4.10)

and using (4.3) gives that

(curl u2, curl u2)K =
1

|det dDK |(
3
√

det dDK)2(curl ũ2, curl ũ2)K̃ . (4.11)

Using then (4.1) and (4.3) and the transformation formula (3.6) we obtain that
for u2 =

∑8
i=1 u2,iφi ∈ {span φj}j=1,...,8 ∩ ker curl⊥ (which can be identified

with the coefficients u2,i) and dD̃K ∈ R3×3 the mapping of type R8×R3×3 → R
defined by

[u2, dD̃K ] → (curl ũ2, curl ũ2)K̃

(ũ2, ũ2)K̃

(4.12)

is a continuous function of type R8 × R3×3 → R+. We may assume that it
is given only on the unit sphere of R8, since λu2 and u2 result in the same
values in (4.12). In this way, the mapping in (4.12) is given on a compact set,
see Lemma 5. Therefore its infimum equals to its minimum, which should be
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positive. Using this with the relations in (4.10) and (4.11) we obtain that for
any dDK ∈ R3×3 and (u2,1, u2,2, . . . , u2,8) ∈ R8

0 < c̃ ≤ (curl ũ2, curl ũ2)K̃

(ũ2, ũ2)K̃

= ( 3
√

det dDK)2 (curl u2, curl u2)K

(u2, u2)K

. (4.13)

Obviously, (curl u2, curl u2)K ≥ c̃

( 3
√

det dDK)2
(u2,u2)K , and det dDK →

0 as the diameter of K converges to zero, then for some h0 we will have
c̃

( 3
√

det dDK)2
≥ C in (4.7), which proves the lemma. ¤

Proof of Theorem 4: Decompose u ∈ N 2
2 (K) as u = u1+u2, where curlu1 = 0

and u2⊥ ker curl. Then, for a given u choose v = u1 − u2 and with this

|BK(u,v)| = | − (curl u2, curl u2)K − k2(u1 + u2,u1 − u2)K |
= |(curl u2, curl u2)K − k2(u2, u2)K + k2(u1, u1)K |. (4.14)

On the other hand,

‖u‖curl,K‖v‖curl,K = ‖u1 + u2‖curl,K‖u1 − u2‖curl,K

= (‖u1‖2
curl,K + ‖u2‖2

curl,K)
1
2 (‖u1‖2

curl,K + ‖u2‖2
curl,K)

1
2

= ‖u1‖2
curl,K + ‖u2‖2

curl,K

= (curl u2, curl u2)K + (u2, u2)K + (u1, u1)K .
(4.15)

Using Lemma 6 with C = 2k2 +1 there is an h0 > 0 such that for any K with
diam K < h0

(curl u2, curl u2)K − k2(u2,u2)K

≥ 1

2
(curl u2, curl u2)K + (k2 +

1

2
)(u2,u2)K − k2(u2, u2)K

=
1

2
((curl u2, curl u2)K + (u2,u2)K).

Inserting this into (4.14) and using (4.15) we obtain that for every K, with
diam K < h0, that

|BK(u,v)| ≥ (curl u2, curl u2)K − k2(u2, u2)K + k2(u1, u1)K

≥ min{1

2
, k2}((curl u2, curl u2)K + (u2, u2)K + (u1, u1)K)

= min{1

2
, k2}‖u‖curl,K‖v‖curl,K .

Summarized, there is a h0 > 0 such that for any non-degenerate tetrahedron
K with diamK < h0 and for an arbitrary u ∈ N 2

2 (K) one can find v ∈ N 2
2 (K)

such that

|BK(u,v)| ≥ min{1

2
, k2}‖u‖curl,K‖v‖curl,K .

Dividing both sides with ‖v‖curl,K gives the statement of the theorem. ¤

15



4.1 Dependence of the estimates on the wave number

We can sharpen the result of Theorem 4 further and compute the dependence
of the critical mesh size h0 on the wavenumber k. Accordingly, we use the
notation BK,α for the bilinear form on H(curl, K)×H(curl, K) with

BK,α(u,v) = (curl u, curl v)K − (αk)2(u,v)K ,

where α > 1 is a given parameter.

Lemma 7 Assume that Theorem 4 holds for the wavenumber k with the con-
stant h0. Then for any K ∈ Th with diam K < 1

α
h0, any α > 1 and any

u ∈ N 2
2 (K) we have for the wave number αk the inf-sup condition

sup
v∈N 2

2 (K)

|BK,α(u, v)|
‖v‖curl,K

≥ min{1

2
, k2}‖u‖curl,K (4.16)

Proof We use (4.1) and (4.3) in the case when K̃ is a tetrahedron with
diam K̃ < h0 and Dα : K̃ → K is defined by Dα = 1

α
I.

sup
v∈N 2

2 (K)

|BK,α(u,v)|
‖v‖curl,K

= sup
v∈N 2

2 (K)

|(curl u, curl v)K − (αk)2(u,v)K |
‖v‖curl,K

= sup
ṽ∈N 2

2 (K̃)

|α(curl ũ, curl ṽ)K̃ − 1
α
(αk)2(ũ, ṽ)K̃ |√

α(curl ṽ, curl ṽ)K̃ + 1
α
(ṽ, ṽ)K̃

≥ √
α sup

ṽ∈N 2
2 (K̃)

|(curl ũ, curl ṽ)K̃ − k2(ũ, ṽ)K̃ |
‖ṽ‖curl,K̃

≥ min{1

2
, k2}√α

√
‖curl ũ‖2

[L2(K̃)]3
+ ‖ũ‖2

[L2(K̃)]3

= min{1

2
, k2}√α

√
1

α
‖curl u‖2

[L2(K)]3 + α‖u‖2
[L2(K)]3

= min{1

2
, k2}

√
‖curl u‖2

[L2(K)]3 + α2‖u‖2
[L2(K)]3 ≥ min{1

2
, k2}‖u‖curl,K ,

where (4.1) and (4.3) were applied in the second line, Theorem 4 in the fourth
line and again (4.1) and (4.3) in the fifth line. ¤

Remark 8 Lemma 7 shows that for the inf-sup condition we only need that
kh is smaller than some positive constant.

Using Lemma 7 and some results in [25] we can prove the k-dependence of the
constant C on the right hand side of (3.9).
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Proof of Theorem 3: According to Theorem 3 in [25]

‖êh‖2
curl,K ≤ C2

1C2((1 + k2)2‖êh‖2
curl,K + h2‖r̄− r‖2

[L2(K)]3 + h‖R̄−R‖2
[L2(K)]3),

where C2 does not depend on h and k, and C1 = 1
min{ 1

2
,k2} is the inverse of

the constant in the inf-sup condition. For wave numbers k ≥
√

1
2

we obtain

C2
1 = 4.

The proof was carried out for rectangular elements in [25] but it is applicable
also for tetrahedral elements if Section 4.1 in [25] is changed accordingly.
This requires a standard bubble function technique which only uses the non-
degenerate property of the mesh. We omit this straightforward but lengthy
analysis. ¤

5 Adaptive mesh generation

In this section we describe how to use the implicit a posteriori error estima-
tion technique in real applications. Let us define the exact error δK , which is
unknown in practice, and the implicit local error estimate (indicator) δ̂K on
element K by

δK = ‖E −Eh‖curl,K , δ̂K = ‖êh‖curl,K . (5.1)

Recall that Eh denotes the numerical solution of the Maxwell equations (2.1)
obtained by using the first order edge finite elements (see Section 2.1) and
that êh denotes the computed error with the implicit error estimator, defined
in (3.7), and solved with the help of the finite element space N 2

2 (K) (see
Section 3.2.2).

The exact global error δ and the implicit global error estimate δh can be
obtained as

δ =


 ∑

K∈Th

δ2
K




1/2

, δh =


 ∑

K∈Th

δ̂2
K




1/2

. (5.2)

Accordingly, if we sum up the terms in (3.9), we obtain

δh ≤ C(1 + k2)δ,

where C does not depend on h and k.

For a given tolerance TOL we aim to construct a mesh Th such that

δh < TOL. (5.3)
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There are several adaptation strategies to achieve this.

Strategy 1. In this strategy, proposed in [21], the algorithm tries to equidis-
tribute the local error over all elements of Th. Thus, we insist that for all

elements K in the tessellation Th the condition δ̂K ≈ TOL√
N

is satisfied, where

N denotes the total number of elements in the tessellation. Element K in
the mesh Th is marked for refinement if

δ̂K >
TOL√

N
.

Strategy 2. This algorithm is based on an area-weighted tolerance approach.
For given element K denote by VK its volume. Then element K is marked
for refinement if

δ̂K > TOL

√
VK

VΩ

,

where VΩ is the volume of the domain Ω. This strategy coincides with Strat-
egy 1 if all elements in the tessellation have the same volume.

Strategy 3. An alternative strategy for error balancing is to refine the ele-
ment K where the computed error estimate δ̂K exceeds a certain fraction
of the total (or maximum) estimated error [21].

Strategy 4. One can also choose to refine a given percentage of the elements
whose error indicator is the largest.

In [39] the authors study several adaptation strategies, such as fixed thresh-
old, error equidistribution and error density equidistribution strategies, but
the fixed fraction Strategy 4 appears to be the most useful, because in their
experiments the other strategies can lead to an unacceptable decrease in the
error reduction rate or even to a stagnation or oscillatory behavior in the error
reduction.

It is also argued in [21] that Strategy 4 is preferable compared to the other
algorithms. Therefore in the rest of this article mesh adaptation Strategy 4 is
used in all numerical experiments.

Remark 9 (Computational costs) In the adaptation algorithm we allow a
growth in the number of degrees of freedom with a factor of at most 3.5, see
(6.3). It is realistic to assume that the computational work for these problems
when using minimum residual (MINRES) iterative solver [37,42] is propor-
tional to the squared number of degrees of freedom. Then the solution of the
linear system on the adapted mesh with the MINRES iterative solver will re-
quire at most 3.52 = 12.25 times more operation than on the original mesh.
During the global mesh refinement each tetrahedron is subdivided into 8 ele-
ments and the resulting matrices are approximately 82 times larger than on
the original mesh. Therefore, the solution of the linear system on the globally
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refined mesh will require at most 64 times more operation than on the origi-
nal mesh. It is realistic to assume that the work required for the element-wise
computation of the implicit error estimate is negligible and we obtain that
the computational work on the globally refined mesh requires approximately

64
12.25

≈ 5.2 times more work than for the adaptive finite element solution. The
computational work in terms of CPU time is presented in Section 6.1.2 and
Figure 10.

6 Numerical results

In this section we demonstrate the performance of the implicit error estimator
(3.3) applied to the time harmonic Maxwell equations on a domain Ω ⊂ R3.
We choose the wavenumbers such that we can get rid of the major part of the
pollution error [4]. Moreover, we expect that Theorem 3 provides an accurate
lower estimate of the error. At the same time, on a fixed mesh, the implicit
error estimate will become less effective when increasing the wave number due
to the pollution error and lack of resolution to represent the wave on the finite
element mesh.

The linear systems of discrete weak formulation (2.6) are solved using MINRES
with diagonal preconditioner.

A good a posteriori error estimator should possess the following properties:

• The error estimator should be able to find those areas in the domain where
the finite element solution has a large error.

• The error estimator should have a magnitude close to the real error, both
locally and globally.

We verify the performance of the implicit error estimator for the Maxwell
equations on five different test cases and define the effectivity index as

εh =
δh

δ
. (6.1)

This quantity merely reflects the quality of the global error estimate but is
useful to get an impression on the performance of the adaptive algorithm.
For any adaptive algorithm the local behavior of the error is, however, one
of the most important factors, therefore we evaluate the quality of the local
error estimation by computing the correlation coefficient between {δi}N

i=1 and
{δ̂i}N

i=1, where δi ≡ δKi
and δ̂i ≡ δ̂Ki

are defined in (5.1).

Whenever the exact error δK is available we compute the correlation coefficient
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[44] between the exact and estimated error as

r =

N
N∑

j=1

δj δ̂j −



N∑

j=1

δj







N∑

j=1

δ̂j




√√√√√

N

N∑

j=1

δ2
j − (

N∑

j=1

δj)
2





N

N∑

j=1

δ̂2
j − (

N∑

j=1

δ̂j)
2




. (6.2)

There is a strong correlation between {δi}N
i=1 and {δ̂i}N

i=1 if r ≥ 0.7

In the experiments described in this section, the initial mesh is denoted by
mesh0, and the subsequent adapted meshes are denoted by meshi, i = 1, 2, . . ..
For adaptation we use the Centaur mesh generator [16] with the so called
source based mesh generation technique. In this method regions where the
mesh generator should create finer elements are called sources, which in our
case are taken as spheres.

We organize the mesh adaptation as follows:

(1) Initialize i = 0 and Nsmax.
(2) Solve problem (2.1) on meshi and compute the implicit error estimate.

Stop if the error satisfies (5.3).
(3) If the local error is almost homogeneously distributed over the elements

then stop the adaptation procedure and apply global refinement. Set
i = i + 1 and move to (2). Otherwise

(4) Mark q% of the elements with the largest error in the current mesh meshi

for adaptation. Based on these marked elements generate at most Nsmax

sources.
(5) Based on the created sources generate a new mesh and i = i + 1, then

move to (2).

Based on the created source information, a new mesh is generated by Centaur
such that

1.5 ≤ Ndof
i+1

Ndof
i

≤ 3.5, (6.3)

where Ndof
i is the number of degrees of freedom (DOF) in meshi. Algorithm 1

describes the mesh adaptation procedure in detail.

The value of q can vary between 1% − 20% and is highly dependent on the
mesh generation algorithm. In all our numerical experiments we have chosen
q = 1 and Nsmax = 15. The small value of q is explained by the fact that the
mesh generator Centaur creates meshes of high quality (no hanging nodes, no
large dihedral angles in an element). A larger value of q would result therefore
in a huge increase in the number of elements compared to the previous mesh
which would not satisfy condition (6.3).
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For the adaptation procedure it is also useful to have a lower bound for the
exact error. In [25] a lower bound for the exact error is provided in terms of
the implicit error estimate. This lower bound ensures that the resulting error
estimate is not a pessimistic overestimate of the exact error when the mesh
size is reduced.

Algorithm 1. Algorithm to create sources for adaptive mesh generation.

1: Nsmax = 15 and Ns = 0
2: Reorder the elements according to their corresponding error in descending

order. Nm = [ N
100

]q - number of marked elements, N - number of elements
in the mesh.

3: for i = 1, . . . , Nm do
4: if Ns = 0 then
5: create a source with a center located in the barycenter of element

i with radius r = max(rs, ri), where rs = α · L with L being the
domain size and ri the radius of the circumsphere of element i. The
parameter α depends on the mesh generator and in all our numerical
experiments we choose α = 0.08.

6: Ns = 1
7: else
8: for j = 1, . . . , Ns do
9: if the barycenter of element i is inside source Nj then

10: do nothing, exit loop 8, go to loop 3
11: else
12: create a new source as described in step 5
13: Ns = Ns + 1
14: end if
15: if Ns = Nsmax then
16: STOP the algorithm
17: end if
18: end for
19: end if
20: end for

6.1 Cylindrical domain

In this subsection we test the adaptation method by solving the Maxwell
equations on a section of a cylindrical domain shown in Figure 2 and defined
as:

Ω = {(x, y, z) = (r cos φ, r sin φ, z) ∈ R3 : 0 < r < 1, 0 < φ < 3π/2, 0 < z < 1},

with the wave number k = 1.
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Z

Fig. 2. Section of the cylindrical domain.

The solution of this problem has corner and edge singularities and can serve
as a suitable test case. The adaptation algorithm should be able to detect this
singular behavior and result in a denser mesh around the singularities.

6.1.1 Cylindrical domain with perfectly conducting boundary conditions

In order to be able to evaluate the true discretization errors we first choose
a test problem with a known analytical solution. We pick up a vector field
E = [E1, E2, E3], substitute it into the first equation of (2.1) and obtain the
corresponding right hand side function J and boundary conditions.

This test case is described in [30]. The exact solution of (2.1) is taken as

E = z(1− z)(1− r2)∇w, where w = r
2
3 sin(

2

3
φ). (6.4)

More specifically

E1 =
2

3
z(1− z)(1− x2 − y2)

sin(2
3
arctan y

x
)x− cos(2

3
arctan y

x
)y

(x2 + y2)
2
3

,

E2 =
2

3
z(1− z)(1− x2 − y2)

sin(2
3
arctan y

x
)y + cos(2

3
arctan y

x
)x

(x2 + y2)
2
3

,

E3 = 0.

This function E has a typical singular behavior along the z axis and does not
belong to [H1(Ω)]3. For a discussion of its regularity see [30].
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Table 2
Implicit error estimate δh, analytic error δ, effectivity index εh and correlation coef-
ficient r on the cylindrical domain with perfectly conducting boundary conditions,
see Section 6.1.1.

# edges # elements δh δ εh r

mesh0 1231 981 0.3503 0.2038 1.71 0.57

mesh1 2828 2259 0.1758 0.1268 1.38 0.80

mesh2 10541 8607 0.1090 0.0787 1.38 0.78

mesh3 17700 14550 0.0991 0.0708 1.39 0.80

mesh4 44247 36826 0.0695 0.0518 1.34 0.80

For comparison purposes we also show the convergence of the error on glob-
ally refined meshes where the error is computed both using the implicit error
estimator and the analytic expression. The lines corresponding to the locally
and globally refined meshes are labelled with a subscript loc and glob, re-
spectively. The numerical results and convergence plots are given in Table 2
and Figure 3. It is clear from Figure 3 that adapted meshes, constructed by
the implicit error estimator, result in a smaller error than the globally refined
meshes with the same number of degrees of freedom. It is also important to
note that as the refinement procedure is continued the effectivity index re-
mains constant ε ≈ 1.3 and is close to one, which indicates that the error
obtained from the implicit error estimator is a good approximation of the true
error. The correlation coefficients in Table 2 indicate strong correlation, which
means that the local error distribution predicted by the implicit a posteriori
error estimation method is very similar to the exact error distribution, see
Figure 4. On the left hand side of Figure 5 a contour plot of the implicit error
estimate on the fourth adapted mesh is given. The elements with larger error
are mainly concentrated near the singularity line along the z axis. The right
hand side plot shows the corresponding adapted mesh where, as we expected,
the finer elements are created along the singularity axis z.

6.1.2 Cylindrical domain with non-homogeneous tangential boundary condi-
tions

In (6.4), the factor z(1 − z)(1 − r2) in front of ∇w was used to satisfy the
perfectly conducting boundary conditions and appears to play a regularizing
role. In the following test case we solve the Maxwell equations with a non-
homogeneous tangential condition on the boundary of Ω, where the same
domain is used as in the previous example, with the exact solution of the
form

E = z∇w, (6.5)
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Fig. 3. Convergence plot in loglog scale for the cylindrical domain test case with
perfectly conducting boundary conditions, see Section 6.1.1.
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Fig. 4. Element-wise error distribution of the implicit error estimate and the exact
error on the fourth adapted mesh in the cylindrical domain with perfectly conducting
boundary conditions, see Section 6.1.1.
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Fig. 5. Distribution of the implicit error estimate on the fourth adapted mesh (left)
and the resulting adapted finite element mesh (right) in the cylindrical domain
(cross section with x = y) using perfectly conducting boundary conditions, see
Section 6.1.1
Table 3
Implicit error estimate δh, analytic error δ, effectivity index εh and correlation co-
efficient r on the cylindrical domain with non-homogeneous tangential boundary
conditions, see Section 6.1.2.

# edges # elements δh δ εh r

mesh0 1231 981 0.2081 0.2209 0.91 0.68

mesh1 5219 4287 0.1286 0.1449 0.87 0.72

mesh2 10967 9018 0.0960 0.1156 0.83 0.78

mesh3 15277 12542 0.0922 0.1068 0.86 0.79

mesh4 26861 24853 0.0784 0.0936 0.83 0.80

with w defined in (6.4). This function, as well as its curl, have the same
regularity as in the previous example [30].

The numerical results are given in Table 3 and the corresponding convergence
diagrams are shown in Figure 6. The sequence of meshes used in this exper-
iment are shown in Figure 8. We observe the same type of convergence for
the implicit error estimator and the exact error as in the previous test case
6.1.1. We note that as the refinement procedure is continued the effectivity
index remains constant ε ≈ 0.8, which confirms the robustness of the method.
The correlation coefficient is also within the range of strong correlation, which
indicates a good prediction of the local error behavior. The local error distri-
bution diagram on the final mesh (see Figure 9) is given in Figure 7. It clearly
shows that the local error distribution of both schemes has the same behavior
throughout the mesh. In Figure 9 a contour plot of the implicit error estimate
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Fig. 6. Convergence plot in loglog scale for the cylindrical domain test case with
non-homogeneous tangential boundary conditions, see Section 6.1.2.

on the final mesh is given. As expected, the elements with larger error are
concentrated along the z axis.

To verify the work estimates discussed in Remark 9 we plot in Figure 10
the exact global error δ versus the CPU time, both on globally and adaptively
refined meshes. It clearly shows that the adaptive algorithm is computationally
more efficient than using globally refined meshes.

6.2 Fichera cube

The next test problem we consider are the Maxwell equations defined on a
Fichera cube Ω = (−1, 1)3 \ [−1, 0]3, with the wave number k = 1.

6.2.1 Fichera corner with non-homogeneous tangential boundary conditions

In this test E = grad(r2/3 sin(2
3
t)), with r =

√
x2 + y2 + z2, t = arccos(xyz

r
).

More specifically

E1 = −2

3

(z3y + zy3) cos(2
3
arccos( xyz√

x2+y2+z2
))

√
x2 + y2 + z2 − x2y2z2(x2 + y2 + z2)4/3

+
2

3

sin(2
3
arccos( xyz√

x2+y2+z2
))x

(x2 + y2 + z2)2/3
,
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Fig. 7. Element-wise error distribution of the implicit error estimate and the exact
error on the fifth adapted mesh in the cylindrical domain with non-homogeneous
tangential boundary conditions, see Section 6.1.2.

E2 = −2

3

(zx3 + xz3) cos(2
3
arccos( xyz√

x2+y2+z2
))

√
x2 + y2 + z2 − x2y2z2(x2 + y2 + z2)4/3

+
2

3

sin(2
3
arccos( xyz√

x2+y2+z2
))y

(x2 + y2 + z2)2/3
,

E3 = −2

3

(yx3 + xy3) cos(2
3
arccos( xyz√

x2+y2+z2
))

√
x2 + y2 + z2 − x2y2z2(x2 + y2 + z2)4/3

+
2

3

sin(2
3
arccos( xyz√

x2+y2+z2
))z

(x2 + y2 + z2)2/3
.

This vector field has a singular behavior near the origin and it is clear that E
does not belong to [H1(Ω)]3.

In Table 4 the numerical results are given and the corresponding convergence
plots of the errors are shown in Figure 11. We observe that the error in the
adaptive algorithm requires a smaller number of degrees of freedom, when the
implicit error estimation method is used to control the adaptation process,
than for the globally refined meshes. During the mesh adaptation procedure
the effectivity index is small, but remains roughly constant, which means that
the error behavior of the implicit error estimation technique is similar to that
of the analytic error except for a scaling factor. The correlation coefficients
again indicate a strong correlation which means that the local error behavior
of the implicit a posteriori error estimation method is very similar to the
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Fig. 8. Sequence of tetrahedral meshes based on the implicit error estimator used
on the cylindrical domain with non-homogeneous tangential boundary conditions,
see Section 6.1.2. Cross section with x = y.

exact error and is suitable to control the mesh adaptation. In Figure 12 a
plot of the local error on the third adapted mesh, both for the implicit error
estimate and the exact error, versus the element number is given. It also shows
a clear correspondence between the local error predicted by the implicit a
posteriori error estimation technique and the exact error. In the left hand side
of Figure 13 a contour plot of the implicit error estimate on the third adapted
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Fig. 9. Distribution of the implicit error estimate on the fifth adapted mesh used
on the cylindrical domain with non-homogeneous tangential boundary conditions,
see Section 6.1.2. Cross section with x = y.

mesh is given. The elements with a larger error are mostly concentrated near
the Fichera corner. The right hand side plot shows the corresponding adapted
mesh where, as we expected, the smaller elements are located near the Fichera
corner and its neighborhood.

Note: The fact that the implicit error estimation technique predicts a signif-
icantly smaller error in this test case than the exact error can be explained
by the fact that the exact solution is curl free. In this case when the curl of
the numerical solution is “nearly” zero, the lower bound for the exact error
provided by Theorem 3 in [25] reduces to a pessimistic estimate for the true
error.

6.2.2 Fichera corner with perfectly conducting boundary conditions

In this test problem we consider the Maxwell equations on the same Fichera
cube but now with perfectly conducting boundary conditions and a given right
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Fig. 10. Error versus CPU time on the cylindrical domain with non-homogeneous
tangential boundary conditions, see Section 6.1.2.

Table 4
Implicit error estimate δh, analytic error δ, effectivity index εh and correlation coeffi-
cient r on the Fichera cube with non-homogeneous tangential boundary conditions,
see Section 6.2.1.

# edges # elements δh δ εh r

mesh0 930 710 0.1115 0.5558 0.20 0.70

mesh1 3377 2716 0.0665 0.3972 0.16 0.82

mesh2 9285 7588 0.0238 0.2436 0.096 0.74

mesh3 14923 12293 0.0124 0.1880 0.066 0.80

mesh4 30816 25642 0.0098 0.1485 0.066 0.72

hand side function

J =
1

d2
e−

(x−α)2+(y−α)2+(z−α)2

d2




cos(π(y − α)) cos(π(z − α))

cos(π(z − α)) cos(π(x− α))

cos(π(x− α)) cos(π(y − α))




,

where d = 0.5, α = 0.25.
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Fig. 11. Convergence plot in loglog scale for the Fichera cube test case with
non-homogeneous tangential boundary conditions, see Section 6.2.1.
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Fig. 12. Element-wise error distribution of the implicit error estimate and the exact
error on the third adapted mesh used for the Fichera domain with non-homogeneous
tangential boundary conditions, see Section 6.2.1.
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and the adapted finite element mesh of the fourth adapted mesh (right) used on the
Fichera domain with non-homogeneous tangential boundary conditions, see Section
6.2.1. Cross section with y = 0.

Table 5
Implicit error estimate δh on the Fichera cube with perfectly conducting boundary
conditions, see Section 6.2.2.

# edges # elements δh

mesh0 898 683 0.3586

mesh1 2874 2247 0.2410

mesh2 8574 6939 0.1584

mesh3 29689 24497 0.1302

mesh4 62575 51969 0.0943

For this problem the exact analytic solution is unknown, therefore the numer-
ical results are presented only for the implicit error estimator, see Table 5 and
Figure 14.

It is clear that the adapted scheme using the implicit error estimation tech-
nique produces a smaller error for the same number of degrees of freedom as
compared to the error obtained on the globally refined meshes. The rate of
convergence of the implicit error estimator is also higher than that on the
globally refined meshes.

The large correlation coefficients observed in all our numerical experiments
(of course, except the last case, where it is not available) indicate that the
error distribution predicted by the implicit error estimator is very similar to
the error distribution of the exact error. This important property is obtained
thanks to the choice of the local basis used for the finite element solution of
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Fig. 14. Convergence plot in loglog scale for the Fichera cube test case with perfectly
conducting boundary conditions, see Section 6.2.2.

(3.3), which will be discussed in Section 6.4.

6.3 Cylindrical domain with high wave number

It is a well known problem that for wave type equations with high wave num-
bers the finite element solution provides a good approximation only under
certain restrictions on the finite element mesh size, see e. g. [4,5]. For more
details we refer to [23] where for a range of numerical experiments the per-
formance of a finite element scheme is demonstrated for the 1-dimensional
Helmholtz equation with high wave numbers.

In this section we investigate the performance of the implicit error estimation
method developed in this article for the Maxwell equations with a high wave
number provided that the mesh contains a reasonable number of elements
per wave length, as indicated in Lemma 7. Here we will only evaluate the
performance of the implicit a posteriori error estimator. The maximum wave
number attainable in a computation depends on the minimum number of
elements per wave length which determines the mesh size for a given domain
and is strongly influenced by the computer capacity. Moreover, for high wave
number problems on fine meshes one needs to apply special techniques for the
solution of the linear systems which are beyond the scope of this article.

Let us consider the same cylindrical domain as in Section 6.1.1 with the exact
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solution given by (6.5). The wave number is chosen to be k = 7 so that we
have two wavelengths (λ) in the domain:

λ =
2π

7
≈ 0.9.

We will demonstrate the performance of the implicit a posteriori error esti-
mation method on a sufficiently fine mesh and will show that the estimator is
able to detect the regions with large error.

The finite element mesh, constructed for this example has 118602 tetrahe-
dra and 146943 edges in the domain which results in an average mesh size
h = 0.12. The solution of the Maxwell equations and the application of the
implicit error estimation method on this mesh produced the following results
for the implicit error estimate, analytic error, effectivity index and correlation
coefficient, respectively:

δh = 0.0974, δ = 0.1619, εh = 0.60, r = 0.71. (6.6)

The effectivity index, correlation coefficient and the error distribution diagram,
shown in Figure 15, indicate that the implicit error estimation technique is
able to detect elements with a relatively large error for a wave number k = 7.
This shows that the adaptive algorithm is also applicable for larger values
of the wave number k. A further increase in wave number, however, requires
computational meshes which are significantly larger than used in the test
cases discussed in this section and are beyond the present capabilities of our
computers.

6.4 Influence of the local basis on the implicit a posteriori error estimator

As discussed in the previous sections, an improper choice of the local basis used
for the solution of (3.3) may result in a poor approximation of the exact error.
We would like to mention that for some simple test cases (not described in
this article) we have also implemented the implicit error estimation technique
with first order Nédélec elements as a local basis for (3.3). The obtained error
distribution diagrams of this implicit error estimation method did, however,
not describe the true error very well. Here we discuss the performance of the
implicit error estimation method on the test case described in Section 6.1.2
when using the full second order Nédélec basis [38] for the solution of (3.3).
Compared to the basis used in the previous section we only add the linear
part of the second order Nédélec basis functions which results in a total of 20
basis functions per element. This increases the computational work required
for the implicit error estimation with 203

83 = 15.625 times more than for the
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Fig. 15. Element-wise error distribution of the implicit error estimate and the exact
error on the finite element mesh in the cylindrical domain with a wave number
k = 7.

basis functions used in our experiments, but also has a negative effect on the
accuracy.

In Table 6 the numerical results of the implicit error estimation using the full
Nédélec second order basis in (3.3) are given.

The results from Table 6 show that the global error obtained with the implicit
error estimation method is now far from the exact error which results in large
numbers for the effectivity index. Moreover, on finer meshes the error of the
implicit estimator does not converge, although the method produced moderate
correlation coefficients. This example also shows that both the effectivity index
and the correlation coefficient are important factors to judge the quality of
the error estimator.
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Table 6
Implicit error estimate δh, analytic error δ, effectivity index εh and correlation co-
efficient r on the cylindrical domain with non-homogeneous tangential boundary
conditions, see Section 6.1.2. For the solution of (3.3) the full second order Nédélec
basis is used.

# edges # elements δh δ εh r

mesh0 1231 981 3.3382 0.2209 15.11 0.59

mesh1 5219 4287 4.2651 0.1449 29.41 0.59

mesh2 10967 9018 4.6682 0.1156 40.38 0.65

mesh3 15277 12542 5.4128 0.1068 50.66 0.65

mesh4 26861 24853 6.0435 0.0936 64.49 0.69

7 Conclusions

We discussed an adaptive finite element method using tetrahedral Nédélec
elements applied to the Maxwell equations on three-dimensional domains. The
adaptation is based on an implicit error estimation technique. We show that
the local problems defined for the error equation are well posed. The local
problems are solved with a finite element method using second order Nédélec
elements without the linear basis functions. The method is tested on various
examples with non-convex domains and the results show a good prediction of
the true error, both locally and globally. Based on the theoretical analysis and
the numerical results we conclude that the implicit error estimation technique
is a powerful method for the adaptive solution of the Maxwell equations. We
have proposed a mesh adaptation algorithm and showed how it can be tuned
for the Centaur mesh generation package. The algorithm creates adaptive
meshes without a drastic increase in the number of elements and generates
high quality meshes, with no hanging nodes and no large dihedral angles in
an element.

An interesting topic for future work will be the implementation of the implicit
error estimation method for the Maxwell equations with higher order Nédélec
elements. In that case an important challenge will be to find a suitable well
defined local basis for the error equation.

Recently the analysis of the implicit error estimator has been continued, prov-
ing that the implicit error estimation technique discussed in this article is both
reliable and locally efficient. More details can be found in [26].
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