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§ 1. Introduction

The method of finite differences is proving to be the most powerful and
universal tool of the approximate solution of complicated boundary-value
problems in elliptic linear equations. This is because its flexibility is suffic-
ient to cope with problems that cause considerable difficulties in classical
approximation methods.? True, it requires considerably more simple and
uniform arithmetic operations, but this difficulty is overcome by the
increased speed of electronic computers and the improvement of algorithms.
It should be said that the progress made in electronic computers does not
diminish the value of the most effective algorithms. As the increased
capacity of the memory permits the solution of more complicated problems,
the amount of work would grow, without the use of the most efficient
algorithms, significantly faster than the speed of computers. There are two
separate questions which occur in solving an elliptic equation by the finite-
difference method.

! Such as the Ritz, Galerkin, Fourier, potential theory methods, etc.
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1. Construction of mesh spaces, the approximation of the differential
operator' by various difference operators (the choice of the ‘difference
scheme), and a justification of the method (a proof that the finite-
difference solutions tend to the solution of the original equation). We
completely ignore this side of the problem in the present survey, though

of course we use some (but only the simplest and most obvious) difference——

schemes in what follows.

2. The actual solution of the finite-difference equation. Formally, we
are concerned with a system of linear algebraic equations of a specific
shape (each row of the matrix has only a few non-zero entries whose
position is given by a simple rule) and a very high order (say 10° — 10%).

Some very efficient methods have been developed for the solution of
these special systems (they could be called elliptic difference equations).
The present paper surveys the main achievements in this area.

A few preliminary remarks on the character of the exposition.

The progress in this area of numerical analysis has been determined by
several fundamental ‘inventions’. They are, as a matter of fact, not many,
and it is on them that we concentrate our attention, explaining them on
the simplest concrete material, such as Poisson’s equation in the square.
Every such ‘invention’ naturally creates an endeavour to use the underlying
idea in the largest possible class of problems, perhaps with some modifica-
tions of the algorithm. These generalizations are also of great interest, and
we try to give a sufficiently clear picture of the achievements in that area,
as well as of the difficulties that have not yet been overcome. Thus, we
are mainly concerned with the simplest example: Poisson’s equation

2 2y -
(1) et ia=1@ )
in the domain
O<z<m) X 0O<y<n)

with boundary conditions of the first kind:
vG..Mv Q\_H‘ — eﬁhv.

However, we are m_m,,o interested to what extent and with what effect one
method or another is applicable in the following more complicated

problems: . .
1. Transition to boundary conditions, for example, of the third kind:
du”
(1.3) agrtBul =e().

2. .?mnmaom;wo. equations with three (or more) independent variables.
3. Transition to boundary-value problems in motre complicated domains,
for example, a domain bounded by a piecewise smooth curve (or surface).

1 Including boundary conditions.
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4. Transition to a more general differential equation with variable

" coefficients, mixed and lower derivatives:

a3 a I7] a a du . 0
(14) 5o y) 5 4+50@ 5+ @ g+ e@ )+

+>W+mnmm+§u\.

In this survey we try to concentrate on those generalizations of the
fundamental constructions that lead to a significant progress in the direc-
tions listed above. We do not consider the generalizations concerning
directional derivatives, boundary-value problems for higher order equations
(for example, biharmonic), or systems of elliptic equations, although the
main ideas of the methods described are also applicable to them.

The paper contains comparatively few proofs, which are selected with
the following points in mind: 1. They reflect the main stages in the
development of the iterative methods. 2. They are elementary from the
point of view of the tools used. As for various generalizations requiring a
more refined technique, we essentially limit ourselves to an exposition of
the results.

Great attention is paid to the meaningful evaluation of results (from the
point of view of a computer programmer, who is interested in the effective-
ness of the method and in its applicability to various concrete problems).
We wish to give the reader a general idea of the state of affairs in this
part of numerical analysis without averting his attention to the techni-
calities. Naturally, we give references to papers containing the proofs in full.

This survey is primarily addressed to the specialist who is faced with the
necessity of solving elliptic problems and who would like to know the
resources of numerical mathematics. The author hopes that the survey will
help such a reader to choose a suitable method, perhaps modifying it to fit
the application to his problem. The notation used in the paper is also
directed towards such a reader. The author has striven to achieve the
maximal mnemonic expressiveness. However, it should be borne in mind
that the language in current journals is different. The scope of new
constructions is not described in terms of concrete problems (the type of
equations, domain, boundary conditions), but in abstract terms of the
theory of linear operators (positiveness, decomposition into a sum of
positive operators, into a sum of commuting operators etc.).

To facilitate the reading of journals, we supplement the exposition of
various methods by the corresponding abstract formulations.

The author hopes that this survey will also prove useful to those for
whom computational algorithms are primarily the object of theoretical
research. The author’s aim is to show in what way the results of this
research are valuable in practice and where the need to remove the
difficulties is now greatest.
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The stencils of the difference schemes (2.1), (2.5) and (2.6) are given in
Fig. 1, which shows the vertices used in approximating the differential
expression in the vertex (n, m), and the corresponding weights
(multiplied by A?).

We sometimes write (2.1) in the form

(2.1%) . (At)p,m = fr.m-
With these explanations the reader should have no difficulty in finding the
difference operator .

(2.7) A% %Js

§ 2. Statement of the problem; basic notation .

Let us consider the finite-difference method of solving the first boundary-
value problem for the equation 2z = f in the = X 7 square ((1.1), (1.2)).
We introduce a rectangular mesh {x, =nh, y,, =mh,n,m=0,1,..., N}
(for-simplicity, -we consider a uniform -mesh -with the same number of
points in x and y). For the approximate solution we take the function
Uy m(m, m=0,1, ... N) defined on the vertices of the mesh and
mmmmmﬁbm the difference equations

! / 922 oy2
It £ £ in the simplest nine-vertex scheme.

p 4 L—,.Illﬂ. For the system (2.1) — (2.2) it is easy to prove the existence and

— uniqueness of the solution and its continuous dependence on f and ¢ /
A_ h... (with estimates that are uniform in 4, which is very important for the
Y £ L4 convergence of numerical solutions to the exact solution). Below we
g 4 describe various methods for solving the system (2.1)—(2.2) with ~N*
: Im|w. + 7% unknowns u, ,, . These are, essentially, iterative methods, where we start
i 7 Iz dy with some initial approximation u%, and successively obtain the values

v
Unlmy Ummy + + oy Un'my . . ., SO that

lim un, m=Uh m

V=00
(where :”.s is the exact solution of the difference equations (2.1)—(2.2)).
However, we ought here to make a reservation as to the use of the term
‘exact solution of the difference problem’. The reason is that all the
computations are performed on a machine with finitely many decimal
places (usually between 8 and 12). Let U(x, ) be the exact solution of
the original problem (1.1)—(1.2), U, ,, = U(x,, y,) and U, ,, the computer
representation of U, ,,, that is, Up*n = Uy, n(l + &,, m), Where ¢, ,, is the
rounding error, which is a random variable with |e| ~10-8—10-2 | depending
on the length of the memory cell.

‘We substitute U ,, in the difference equation (2.1):

@1 Awwv;% (Ze), =fomln m=1, 2, ..., N—1),

together with boundary conditions (of the first kind)
Un, 0= Pn,0, Un, N =Pn,1 >
AE\“JOQ AJ seay N<v~

Ug,m=Qo,m,Un,m=P1,m

(m=0,1, ..., N)

2.2)

(where f and ¢ are given mesh functions defined, respectively, on the
interior and boundary vertices). Let us clarify the notation: unless the
contrary is explicitly stated, we use in (2.1) the simplest difference
approximation, that is,

. %u __Una,m—2Un, m+Unit,m
(2.3) /,,,Awmvs.su 72 . (2.8) (AU*)n, m—fr,m ¢ AR*+ B o= +-¢F.
If the equation has variable coefficients, then :
4  du U U

azt |’

Here Ah? is the approximation error, A ~

Fr (assuming that U

@24 (Hags), .=
a9z oz n,m
’ Unit,m—Un,m __ o 4 Un,m—Un—y,m H_
—_— :lln m *Ns .

ﬁaﬁ._\wl. m h 2

?"l"

i

3
B

is continuously differentiable sufficiently many times), and B and F are
quantities depending on the functions U and f. The formula (2.8) makes
it possible to arrive at certain qualitative conclusions, which are important
in computational practice.

First of all, it is clear that 2 cannot be diminished without increasing the
number of decimal places: a reasonable lower bound for 4 is determined
by requiring that the approximation error A#* and the rounding error

For the mixed derivative we use, for example, the scheme
(2.5) A mw:fv, 1 Un+i, m+1—Unt1, m—1 Un—1, m+1i— Un—1, m-1 g.

520y n, m- 2k o - 5

Tes (2L

l

.»I ﬁ==+r5+»|.::+r§| ==,§+»|=P3 Q ..T
2h h h
1 Un,m—Un.m-1 Un_4,m—Un-f,m-1
|T|_H n, . , , Q
2h

h h
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m% are of the same order, that is, & ~ mﬁf. (If we use fourth order

difference approximation, that is, one with the approximation error O(h*),
we obtain in the same way the lower bound %2 > O(e's)  for the size of

the mesh step.)

Secondly, it is obvious that (2.1) has no exact solution in the class of
machine numbers, and that in fact there is no need for it. Any
approximate solution is characterized by the size of the ‘residual’

29 ma=Q0urm—fam @m=1,2, ..., N—1).

There is n6 need to continue with the iterations after an approximate
solution u* with {I#’|| ~ Ah? is obtained. We are mainly interested in the

convergence of the iterations for || rv || > Ah® (mm, and so the rounding

errors are ignored in the first stage of the study of an iterative process.
This may lead to the wrong conclusions, in which case a more accurats
analysis has to be performed. Thus, we judge upon the accuracy of the
approximation from the residual norm!

—{ N-1 1/2

N
(2-10) Iml=| Z Z B0 -

In this way we introduce the usual inner product and norm in the space
of mesh functions. The accuracy of the approximate solution can also be
measured by the norm of the error

(2.11) Un, m=lUn, m— Uk, m

(where uf ,, is the exact solution of (2.1)—(2.2); we recall that so far we
ignore the rounding errors and assume that u* . exists). To characterize
the accuracy of u” by the quantity |[v”|| is convenient in experimental
work, when uyx ,, is known (for example, we may start with an arbitrary
function u},,, determine f and ¢ from (2.1) and use them in the
computation). In Emoﬁo& work, however, the achieved accuracy is usually
measured by || 7V || = Au¥ — f|. It is useful to note that v” satisfies the
homogeneous boundary conditions and

ANANV ADC)\V:.S”A>§ev=.3|.\=.3”ﬂw. m AR, m=1,2, ..., N<|C

The analysis of the convergence of iteration processes depends very much
on the spectra analysis of certain operators. We introduce the eigen-
functions and the eigenvalues of the matrix of the difference equation

. _ §.<+» .< _

The accuracy of u¥ is sometimes measured by max

mn Ilu? __

of u®. One should remember, however, that a good stabllization of u¥ may be due to very slow
convergence.

, that is, by the stabilization
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(2.1), together with the homogeneous boundary conditions

(2.13) A®)n, m= —hyil s [ 9P |[=1,
emmv =0 on the boundary.

In (2.13) we often use separation of variables, in which case it is
convenient to label the eigenfunctions and eigenvalues by pairs of indices

Ap, ) = — Ap, g D,

Here @
Mpa=hp+As  Om =Y U

mm@v A mm&ev =§
A QMN v:“ I?ﬁ%B A a2 S”'»ﬁx:,,.

For the simplest problem (2.1)—(2.2) the exact values of A,, A, ¥’ and
x@ are well known,! but we do not make any use of them. For a later
characterization of a spectrum its bounds are essential:

@44 0<i<ip <L, 0<l<h<L, 0<l<h<

The lower bounds /, ' and " coincide up to O(h*) with the lower spectral
bounds of the corresponding differential operators; the upper bounds L', L”
and L are usually well estimated by such quantities as the maximum (in m
and n) of the sum of the moduli of the weight coefficients in the difference

and

m mZn
scheme. For (2.1) this gives the nearly exact value L o~ = An
efficient application of iterative methods to the solution of finite-difference
elliptic equations requires a reasonably accurate estimation of [ (below) and
L (above). Estimates for I may be obtained either by one of the classical
methods or by essentially the same iterative method as that used in solving
the problem. We have now introduced some of the fundamental concepts
that are used in what follows; the remainder appear as we describe the
iterative methods.

§ 3. The simplest iterative methods

Taken on their own, the methods in this section are relatively unimport-
ant, due to their very slow convergence (for values of N ~ 50 — 100,
typical in present-day computations). They are, however, used as elements
of more perfect algorithms; furthermore, their exposition is a simple and
convenient way of introducing some of the concepts that are important in
what follows.

n
! For example, ¥, @ sin Zv z (ignoring the normalizing factor).
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1. The method of simple iteration. We have

SM“T.\»:NQMV§+H~A>R<v=.§|\=.§f n, m=1, 2, , N—1,

CRVIE S

2

14
wom = Un m O1 the boundary

(assuming that u° satisfies the boundary conditions). Henceforth we use a

shortened expression for (3.1)
(3.1%) wH = uv 4 (Auy — f).

Subtracting the obvious equation u* = u* + v(Au* — f) from (3.1%) we
obtain a formula for the evolution of the error v¥ in the iterative process

o ~\<+»“§<+d.>§<nﬁm+d>v~\<q
(3.2) vt =0 on the boundary.

We expand v°® as a Fourier series in the eigenfunctions of a:
V0= D)@,
Then, obviously, P
(3.3) =N e, (1—hy)" .
Furthermore, || v°|| = HM e _:m am:a
v

3.4 ov)=[2ep (1 —ap) ™12 0| max |1 —1h

I<SASL

From (3.4) it is clear that for the greatest efficiency of simple iterations
the parameter 7 must be a solution of the problem

(3.5) min max |1-—t.A[,"
T IA<L )

The optimal value 7* is easily found:

2
Amw.mv H*H.HH.TIAN
and gives the coefficient of convergence
' 4
" % IthZ i ~ —2—
:HNMMM:ld AM=1—1¥=—(1—= Sla[ —2 e L

The quantity » = —1n p is called the index of the quality of the iterative
process, since it determines how many iterations are needed to obtain an
approximation u’ with the norm of the error ¢! times smaller than that
of the initial approximation u°. For it follows from ||| < ¢|[t°|| and

(3.4) that
Ing1 L 1

Aw.d; Vo — P\ﬂglml.

This fact is sometimes expressed by a formula for the decrease of [jv*}| in
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the process of iterations:
(3.8) [[o¥]] & {[%fle=v.

Applying the difference operator & to both sides of (3.2) or (3.3) we see
that the residual norm decreases at the same rate

(3.9) Il << woiirll, dee [lVI] o [irolleT Y.

For the problem (2.1)-(2.2) we have ! = 2 + O(#®), L ~ 8N?/n?, and

w = n2/2N?, Taking, for example, N = 100, and assuming that it is necessary
to diminish the original residuals 10° times, we find the number of itera-
tions to be v o~ 2,5.104 A computer with ~10° operations per second
performs one iteration (computation of 10* values in the vertices of the
mesh) in about 0.5 sec., and the complete calculation needs more than

3 hours of machine time, which is totally unacceptable. Of course, the real
evolution of llrell is not quite the same as in (3.9). The iterations |ir*||
decrease at first at a much faster rate, due to the decrease in those terms
of (3.3) for which |1 — A,| ~ 0. This can be described as an intensive
suppression of those components of the error that correspond to the middle
part of the spectrum. However, relatively soon (3.3) effectively contains
only those terms that correspond to the points of the spectrum close to
the bounds [ and L, and thereafter ||#’|| decreases according to (3.8). The
observation that the simple iterations converge extremely slowly at the
boundary of the spectrum and more quickly in its middle is the starting
point for Richardson’s method of improving the rate of convergence. Note
also that for v &~ 1/L the rate of convergence depends asymptotically only
on the lower bound of the spectrum:

Il feog (1—7) =l @ -

This permits the use of iterations with © ~ 1/L in order to determine the
approximate value of [: we choose integers v, and v, and, after v, + v,
iterations, put

vitva i/ve -
(3.10) NRWTIAFWQE ]-

This formula becomes more accurate with growing v,, and it would be
precise if (3.3) contained only one summand, corresponding to A, = [. The
presence of other summands means that [7°ll decreases at a faster rate than
e?™ so that (3.10) gives an excessive value for /. The problem of deter-
mining / is facilitated by the use of meshes with a small number of vertices,
much fewer than N2. This is due to the fact that / is an approximation of the
first eigenvalue of the original differential problem and that the first eigen-
function is the smoothest and gives the closest fit between the differential
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and difference operators.
All this can be stated as the following theorem.
Theorem 1 The method of simple iteration:
uv*l = uv + (Au¥ — )
\ownwmusgﬁxQ.CI@.NVEE:.H NP+I~ noE\mxw&\oxm:wN.ﬁ.:.&

function u®. The residual norm and the error decrease in the iteration
process according to the formulae

[[w¥ [ o [|o° [ =200,

- P y - ’H -
In order to decrease the residual of the original approximation e times,

it is necessary to perform v ~.L 1L iterations.

72 &

i sl r® [l e=2vire.

For the difference approximations of the second order elliptic equations
. L , . R 5 1
we usually have — =~ O(N?), and so the number of iterations' is DAZ Fﬂv.
The estimates of the decrease of |lv”|i and {I#”|l cannot be improved if
we admit arbitrary initial functions u°; for it is sufficient to take
u® = u* + cp, where ¢ is the eigenfunction corresponding to A = [ (or L)

(here and in what follows we assume that /| << L and we disregard the
difference between 1 —2I/L and e~2¥L),

It is easy to see that we have not in fact used the concrete form of the
difference operator 4. We only need two of its properties:

1. Self-adjointness (as we have used the machinery of the Fourier series).
2. Positiveness of the difference operator —2; to perform the computa-
tions and estimate their efficiency one need only know the spectral bounds.

Hence the method of simple iteration withstands the widest range of
generalizations of the problem in all the directions we are interested in. It

is, apparently, the most general method for solving elliptic difference
problems. Here is another problem concerning the construction of the
approximating difference operators: suppose that the original problem has
the form Du=f Tu=o.

We do not specify the form of the equation, the form of the boundary :
conditions, or the shape of the domain. We only assume that the operator o
—-D with boundary conditions T'u = 0 is linear, positive, and self-adjoint. To
what extent are these properties preserved under one finite-difference
mvcnoxwamamw or another? There exist devices that enable us to obtain

1 1

1 The number of iterations is sometimes given as O Amm «1n Mv . This is not a very good formulation,

because what matters here is the number of vertices and not the size of the step.
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difference operators necessarily having these properties.! On the other hand,
it is known that certain difference approximations may destroy self- .
adjointness; at the same time it is clear that any such loss must be of the
order of the approximation error. Bearing in mind this, and the unavoidable
use of methods in practical computations beyond the theoretically studied
situations, we need not be too concerned about the lack of self-adjointness
of this kind. All the more, because in the convergence proof there is one
so far unused resource: for the convergence of the iterations
u = yv 4 1(Duv — f)
it is sufficient to have an estimate of the norm of the iteration operator
1E + D]l = p<<1.
A more serious difficulty arises in the generalization of the problem for
which the spectrum of the operator crosses the negative semi-axis, that is,
I < 0. This may be due to lower order terms in the initial differential
equation. Such problems are of interest and we shall return to them.
It is appropriate here to give a short explanation of the boundary
conditions of, say, the second or third kind. To be specific, consider the

equation (2.1) with the boundary conditions L ¢ for x =0, or, in

oz
finite differences,

Uy, m—Uy, m

% = Pm ASH?N,..J\(‘I»V.

There are two ways of realizing such a boundary condition in the iteration
process.

1. Having computed u}ts, = uyl m -+ (Au® — f),.  at all interior points

n,m=1,2,..,N-1),find 4o ,(m =1, ..., N- 1) from the formula

Uy, m = Ui, m — RQp,.

2. First take the boundary conditions into account, transforming the
difference equations at the points (1, m) in an obvious way. Then the
iteration formula for the quantities :_u takes the form

.m
e vy
uph g, | S S (B,
The author has used both methods in his computations and, although he
has a distinct preference for the second, cannot raise any serious objections
against the first.

Il Seidel’s method. This method, which is close in efficiency to that of
the simple iteration, is conveniently introduced as the simplest version of
the so-called method of minimal residuals. Its idea is simple and sufficiently

! These are the so-calied variation-difference schemes; however, they are not always convenient in

computations.
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fruitful, since in combination with certain non-trivial constructions, it leads
to efficient methods of solving finite-difference elliptic @.n_oEme. It is well
known that solutions of many boundary-value problems for elliptic differ-
ential equations minimize a certain functional. For example, the solution of
the first boundary-value problem for the equation

d @ - du -

BA1)  Du= - :lw+|@|a+|@|+|m|g|v ulp=q,

minimizes (in the class of functions satisfying the boundary condition
ull’ = ¢) the value of the functional (Dirichlet integral)

(3.142)  Flu(-, .:mw:_éﬁmg}ié %&frﬁ fudzdy.

Computing in the obvious way the functional derivative of F with respect
to u(.,.) and equating it to zero, we obtain (3.11). In other words,
Flu(, -
(3-13) Ll Duti.
Another functional with a self-adjoint operator D can also be used:
(3.14) Flu(-, +) mw&AlngrN?&a%.

For this we also have (3.13). Using the space of the mesh-functions u, .,

and some quadratic formula for the functional F (3.12), we can compute

the derivative F, and obtain the finite-difference analogue of the equation
(3.13) with a self-adjoint difference operator that approximates the differ-
ential operator D. This is the main idea in constructing variational difference
schemes. Thus, the simplest five-point difference operator for the Laplace
equation is obtained by taking for F[u] the expression

> N—{ N-1 ,
(3.15) mEmeMUMqEE$EEV+
m=1 n=
-1 N-1 2 N—-1N-1
+5 SM M_ AEV +M_ M_ R2fr. it m-
m=0 n=1 n—{ m=—1

In the method of minimal residuals, having obtained some approximate
solution uv we choose a function » for the direction of the descent (v
must satisfy the homogeneous boundary conditions of the problem in
question). The next approximation is then taken to be uv*® = uv -|- s*v

?

where the ‘step of the descent’ s* is defined as the solution of the problem:

to minimize the quadratic function of a single variable s:

(3.16) . BEG@ BE@..TTT«S

Various versions of the method of minimal residuals differ in ways of
constructing the function v, — a very important point which determines
the efficiency of the process. It is natural fo use the ‘gradient descent’

3
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.5& is, to take oF

Un.m= — Amk VFSHAD?I\V:.S.
(This formula defines v at the interior points of the mesh; the values of v

on the boundary are given by the homogeneous boundary conditions.) The
resulting formula

(3.17) uvtt = u¥ + s*(Duv — f),

differs from the simple iterations (3.1) only in that the step s* not taken
beforehand on the basis of the estimates for the spectral bounds, but is
determined by u” as a solution of (3.16). The investigation of convergence
for the non-linear process (3.17)—(3.16) is considerably more complicated
than for (3.1). However, these investigations have been carried out, and
the convergence of the methods (3.1) and (3.17) is asymptotically the
same. At the first iterations (3.17), ¥l usually decreases faster than for
(3.1), but this advantage disappears relatively soon and the rate of decrease
(that is, the quantity||rv+1])/|rv]]) of the two processes is thereafter the
same. One can give an example of the initial approximation u° for which
{7”Il in the process (3.17) decreases from the beginning according to the
asymptotic formula (3.8).) Seidel’s method is obtained from the method
of minimal residuals by taking for v, , the function
(1 for n=n* and m=m*,
L 0 at the remaining points of the mesh.
Considering for simplicity ﬂro problem (2.1)—(2.2) and writing down the
finite-difference analogue of the functional flu + sv] (3.14)

N—1N—1

(3.18) RE 2 D I—A @ +s0) +2fln, m (U +50)n. ms

m=1 n=1

**|l
=1

we easily find that the minimum of (3.18) is attained at the point

N—-1N-1 (et m¥)
Bu—fn, mog ™
o Q,M §M " (A= s
~ N-1N-t% - 4in? *
Awwwv M M (—Av)n, mvn, m
n=1 m=1
v+t v " Au®
Urs e = Upse s 7T IA u I\v:* m¥.

A single iteration in Seidel’s method consists in computing from (3.19) the

values u,« ,,» successively forn* =1, 2, .., N~ 1l and m* =1, 2,... N-1.
Taking into account that the values of u, ,, for n < n* and
,2,..,N-l,and forn=n*and m=1,2,..., m* - 1 are

already known at the time of computing #,« n» and should bear the super-
script v + 1, we obtain the final equation

1 2
(3.20)  wyti=_(uytl uptt ey, bl — R w)

(n,m=1,2, ..., N—1).
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This equation can be written in a more concise form. We can represent the

matrix of the system of linear algebraic equations
52 32u
(3.21) () (55), =
in the form Ty + Ty, where Ty is the triangular matrix containing only the
entries on or below the diagonal and Ty contains all the entries above the
diagonal. Then Seidel’s process for solving the equation (Ty + Tg)u = f can
be written as

(3.22) T+l Ty =f or w+i=Tz (f—Touv).

In this form the process can be generalized (at least formally) to more

complicated equations without any reference to functions of the type (3.14).

In solving a boundary-value problem with the condition lw.m = 0, say, we

can act in two ways: either we start with (3.20) and then find the boundary

N 1
values :uﬁ, = :aﬁr:. or, for example for n = 1, we use the formula

WP = 5 O Y, i F, P m).
7
To form some idea about the convergence of this method we make use of
a device which, although not rigorous, is much exploited in numerical
mathematics. Consider the process (3.20) for an unbounded problem. The
eigenfunctions of the transition operator from u” to u**! are then known,
namely, they are the functions ei&tv™, where ¢ and n are real parameters
whose values must be restricted in some natural way. The upper estimate
is obvious; | < 7 and Iyl < 7 — this simply takes into account the
periodicity. The lower estimate is not strict but more significant; it should
to some extent compensate for the disregard of the boundary conditions.
Let R, and R, be the typical dimensions, the x- and y-directions,
respectively, of the domain in which the problem is being solved. In the
.analysis of convergence we confine ourselves to the values
A 1 h 7
8> 5 In>E ~F
This is the condition for the wave-length of the smoothest of the functions
in question to be of the same order as the lingar size of the domain.
Substituting ei Gn+nm) in (3.20), we compute the eigenvalues A, , of the
transition operator corresponding to this function:
o iE in
(3.23) M= -
The quantity m:wx INg, 7l enables us to make a preliminary guess about the

convergence of the process. Without going into detailed analysis of (3.23),
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let us compute its values, so to speak, on the boundary of the spectrum:

Pnl =g |ha o |l—T,
N'N
Thus, the iterations converge well for high frequencies (this estimate is
fairly accurate because the high-frequency eigenfunctions are, roughly
speaking, independent of the boundary conditions). The convergence is very
slow for low frequencies; although the latter estimate is not very accurate,
it gives an essentially correct idea.

As we have mentioned above, we can choose the direction of the descent
to be v, , = (DU’ = f),, . (supplementing its definition at the boundary by
means of the homogeneous boundary condition). To compute the step s*
of the descent, we do not need any estimates for the bounds of the spect-
rum of D, but we have to compute the functions v and Dv and the two
inner products (Du - f, v) and (Dv, v). It is useful to note in this context
that in comparing the efficiency of various iterative methods we should not
look only at such parameters as ‘quality’ » (3.8). The programmer is not
interested in the number of iterations, but in the total machine time ¢
necessary to achieve the given accuracy. Therefore apart from the ‘quality’
%, which measures the decrease of residuals with the number v of iterations,
we must also consider the machine time T in which the computer performs
one iteration. Since v = ¢/T, the decrease of the residuals with ¢ is given by

t -
1l o [ ro | e=HT.

Although %/T is a more objective characteristic of the process, we consider
in what follows only the quantity ». The reason is that T depends not only
on the structure of the method, but also on a number of extrancous factors,
for example, the capacity of the operative memory. If the latter is ~2N?,
so that it is possible to compute and store the function v, ,,, then the
iteration (3.17), including the computation of s*, requires about twice as
much time as (3.1) with the step r predetermined: this time is mainly
spent on computing v, ,», = Du-1), ., and (Dv), ,, (see (3.24)), while for
(3.1) T is spent on the computation of (Du— DHn.m - But if there are ~ N?
memory cells sufficient only for the basic array u, ,, then T is about
three times greater for (3.17) than for (3.1): after computing s* we have
to compute (Du - f), ,, again to find uy’y, from (3.17).

§ 4. Richardson’s method

In 1910 Richardson proposed a simple and efficient method of
accelerating the convergence of the simple iterations (3.1) substantially. The
actual scheme for computations is no more complicated than before:
the computation is to proceed according to the formula

4.1) W = w1y (Au — ),
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each iteration having its own 7,. The gist is, of course, in the special
choice of the sequence 7, (v = 1, 2, ...). The formula for the error v”
in the process (4.1) is an obvious generalization Om\a.w#

(4.2) =2 cp .: (1—7ihp) 9P
e .- i=1
Given a certain number v of iterations (it is explained below how to
determine v from the required accuracy &) we naturally demand that

{v:}i=; is a solution of the EoEmB
(4.9) min max | : (1—7:) |,
T IZASL i=ti
which immediately leads to the Chebyshev polynomial nearest to zero on
[l, L] and normed by the condition Tv(0) = 1. Thus, one iteration by
Richardson’s method consists of v iterations (4.1) with the parameters
4.4) = 2 (i=1,2, ..., ).

@tvim!soom%

The first terms 74, 72, ... in the sequence (4.4) are quantities of the same
order of magnitude as i/L; the first iterations effectively suppress those
components of the error that correspond to the points of the spectrum,
near its right-hand end L; the components corresponding to X ~ [ are also
suppressed, but very slowly like e?"X. The last terms ..., r,_;, 7, of the
sequence (4.4) are quantities of the order 1/I; the last iterations intensively

. . A
suppress components with A, ~ [ (that is, T — !wl_ ~ (). But at the same
time there is a strong divergence on the right-hand end of the spectrum,
since 253’ 1 — Wm _ ~ hﬂ Altogether, in ‘accordance with the graph of the
Chebyshev polynomial the components of the error are more or less

uniformly suppressed over the whole spectrum [I, L]. The efficiency of the
'method can be estimated by using the formulae for the Chebyshev

. 2 I4+Ly
polynomials. We introduce the variable z(2) = 4= A - l.wlv, and put

xo = x(0) ~ —(1 + 2n), where n = I/L. Then

M @t VE D) '+ = Va—1)"
1—1h)= v
(4.5) MA T e VA 4 (s VA

It is well-known that

@) w=max | [ =i |=| [[ d—wpl=| [ d =,

ISA<SL i=1
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and thus (as x(L) = 1),
_L.”

2
(wo+ Vaz—1) +(z— Vi —1)"
As we are interested in the case n << 1, we have

VZ—1~Vi+dn+4n* —1~2V v, and we are required to estimate the
quantity

(4.7) oo

2
(+2 V) +(—-2 V)
We do not intend to go into a full analysis of (4.7); the necessary conclu-
sions can be obtained by considering the following three cases:

l
-2 lhlc?ch

1. <AAN.—\*4. p(v)~e ;

1 2
2ovy—— ~N—_—
(4.8) VS B (v) VAL TR
2 Imiﬁ_-ﬁlw .

1
3.Vy —=: —_—
v 2V B () L2¥Vn

This shows that Richardson’s method is preferable if v > 5\1 when its

efficiency is /(L/l) times greater than that of the simple iterations (3.1).
The solution of the example mentioned above (decreasing the initial residuals
105 times) on the mesh with N = 100 for the equation (2.1) would now
require about three minutes. However, the attempts to use Richardson’s
method in the form in which we have described it above ended in failure;
there was a complete discrepancy between computed results and theory.
The fact of the matter is that the theory disregards the rounding error and
a (theoretically) convergent process turned out to be even divergent. This is
not difficult to explain. We have mentioned above that the evolution of the
various Fourier components of the residual is of uneven character. The
behaviour of the process is illustrated in Fig. 2, which shows qualitatively
the changes of the component ¢{? corresponding to the left-hand end of the
spectrum (A ~ [), and ¢ corresponding to the right-hand end.

e e
&)
h.ﬁ\

.
.
.
.

%E . .
oﬁoww\ /Uumoﬁom_

Vj v
Fig. 2.
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At the first iterations (t ~ 1/L, i=1, 2, .. .), for A~ L we have
(1 — tA\)~0,and c{) decreases sharply, while ¢® stays nearly constant
?mv ~ mm:A »l er v .By the end of the iteration process (i=...,v—1,¥),

c® decreases sharply (v~ 1/l, (1 — tA) >~ 0 for XA ~ I); at the same time
there is a strong increase of ¢). This coefficient is in a single iteration
increased about L/l times, but this growth starts with very small values,
so that the overall decrease of ¢ and ¢& in v iterations is the same. .
However, this argument ignores the rounding error ~ |u|e (where lul is the

typical size of u), which implies that ¢ cannot stay very small. Naturally,
this error is spread over the whole spectrum. Hence the sharp increase of

c® at the concluding stage of the iteration cycle does not begin with its
very small theoretical value, but with a much larger value determined by

the rounding error. For large v &~ N ~ 100 this means multiplying ¢, by

% 7\»[..2& (that is, for N = 100, by 4000) in one iteration. Four such itera-

tions are sufficient to move the rounding error from the last places of the
mantissa to the first so that the theoretical analysis of convergence which
we have carried out above becomes irrelevant. There are two ways of
combatting this nuisance: either by using Chebyshev polynomials of low

order v (and this leads to a marked decrease -of the efficiency, see

._\:
(4.8)), or by using the parameters 7; not in their natural order (4.4), but
in some different arrangement, which makes the evolution of the compon-
ents of the residual over the whole of the spectrum as uniform as possible.
Although empirical groping towards the second method started many years
ago, the exact formulation and solution of this problem was obtained only
quite recently in the paper by Lebedev and Finogenov [1]. They consider
the process (4.1) and a certain permutation {v;}i—jof the terms of the
sequence (4.4), and introduce the polynomials

v

(4.9) 53 m (1—m1:-3), ngum mt (1—1:-3).
The first polynomial is the factor that after k iterations of the component
of the residual corresponds to the eigenvalue A; the second polynomial is
the factor by which this component is to be multiplied in the remaining
v — k iterations. The problem formulated in [1] is to find permutations of
the sequence (4.4) for which the quantities

max | P¥(A)] and max|Q¥ (M) |
<AL 1AL
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are bounded' for all k = I, 2, ..., v and for all v. These permutations are
-found in [1] for v = 27; the construction turns out to be quite simple
and we give it here, as it is an essential part of Richardson’s method. For
p = 1, the 7; in (4.4) are taken in the order {1; 2}. Given the permutation
T.: iy, .. .05y}, the permutation for v = 2°*! is obtained by replacing each
i; by the pair {i;, 2?** 4-1 — i;}. So we obtain the following permutations
of the r; in (4.4):

for v=4:{1,4, 2, 3),

for v=8:{138, 45,27, 3, 6},

for v =16:{1, 16, 8, 9, 4, 13, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11}
etc.?

Let us summarize all these facts.

THEOREM 2. To decrease the norm of the residual (or the error) of the
initial approximation e~! times it is sufficient to perform v iterations
according to the formula

utt =ul 1y (Adt— ) (i=1,2, ...,v=2").
Here <Z|~\] Fl. and the 7; are the terms of the sequence (4.4),

ordered according to the prescription in [1].

It is worth noting that in this case the norm of the residual (error) in
the iteration process decreases H&ﬁ:\m_% uniformly, in accordance with the
formula

).\ IMsa\ .l
__a :LNI __%__Q : :IH.
The scope of Richardson’s method is almost as wide as that of the method
of simple iterations; almost, because the convergence of simple iterations
requires only the inequality ||E + tD{| = p << 1, which does not exclude

the presence of complex eigenvalues for D. For Richardson’s method this
would necessitate a modification of the theory behind the choice of the
parameters ;. However, this remark concerns general matrices D; for |
difference elliptic equations the appearance of complex eigenvalues is
unusual. More pressing problems (from the point of view of the programmer)
are oosuﬁoﬁoa with operators D such as, for example,

2
(4.10) MIA%-T w +aE), 0<a, y<a, a>2.

M&a Bmwbgm of these conditions becomes clear if we realize that the iterations are in fact given by the
ormul

wvti

n, m = Un, 3+HA>= —fn, Sle: me

The rounding error is ml~10710]uy 1.

2 A similar resutt has cmoa ocSEam by Samarskii ([11], 475).
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Here the spectrum is basically positive, but a few of the first eigenvalues
are negative. The formula (4.3) leads naturally to the problem of constructing
the polynomials that are closest to zero on the union of the two intervals
[, I¥] U [I**, L] (where [ < [* < 0 I** << L and [, I* and I** are
numbers of the same order, while L is significantly greater). The author

knows only of the simplest results in this direction [2]. We note that there —=

is a formal device transforming any system Du = f (det D # 0) into a

form suitable for the application of Richardson’s method. It consists in
considering the equivalent system D*Du = D*f. The operator D*D is self-
adjoint and positive; however, if we denote by / and L denote the eigen-
value of D of minimal and maximal modulus, and by /* and L* the bounds
of the spectrum of D*D, we obtain: [*/L* = /LI, and Richardson’s
method gives for D*D the decrease of the residual at the rate e 2oLl
Hence the universality of this device is balanced out by its too slow rate

of convergence.

§5. Young's method

In 1954 Young proposed an iterative method, which he called the
successive over-relaxation method. Its rate of convergence for such problems
as (2.1)—(2.2) is the same as for Richardson’s method. While Young’s
method is inferior to Richardson’s in its scope (being only applicable to a
comparatively narrow class of elliptic difference equations), it has the
important advantage of being numerically stable. The evolution of the
residual norm in practical work on electronic computers fits well with
theoretical predictions that disregard the rounding error (of course, as long
as ||rv|| > |ule/k*). However, this advantage disappeared after the publication
of [1], and the value of Young’s method as a means of actual solution of
elliptic difference equations was much diminished. We shall therefore
describe it here only in general terms. A condition for the applicability of
Young’s method in the solution of the system of finite-difference equations

(5.1) , AGEV:..S = fn.m

is the possibility of rearranging the variables u, , in such a way that the
system can be written in the form

(.2) ﬁw va ﬁu - @ .

(Here &: and &: are easily invertible, for example, diagonal matrices).
For the system

(5.3) NM (S5t (o), o =Fnm,

2:.3?;”6,
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this rearranging consists in putting all the even u, , (that is, those with

. n + m even) first and all the odd u, ,, last. Note that the presence of a

mixed derivative or the use of the nine-point scheme of the fourth order
for cu = \ Emem the representation (5.2) and the application of Young’s
scheme difficult. Formally, the iterative process [3] is written in this form:

1) zei ﬁ|€vtw+8mw;blma:mv
2) uit' = (1 —o)ul + 085! (f,— Ayult?).

For the system (5.3) the scheme (5.4) is realized as follows:

1. First one computes for all the ‘even’ vertices A@xoocﬁ of course, on
the boundary)

1
:M”_.E A»lev ::.S Azﬁ i, m :3 m— »4123%» §|T§?§+»|\%\=..Sv.
2. Then one finds for the odd vertices

1__

g“ﬁ: 2. .ISV :‘3 m Nw AQ\MHM‘ §+=M“Jw~lp ;TE.MH»» §1T§M+m:+» Il*pw\:. Sv.
Here 1 < w < 2 is the relaxation factor, which has an essential influence
on the rate of oo=<mnmm:om... The theory behind the choice of w is based on
the computation of the spectrum of the transition operator from u® to u**1.

The points of the spectrum of the operator (5.4) are determined from the
characteristic equation

.. vrll %II \,I“_
55 et ﬂ, (A—NE  of4s )0
Aokt dy  h—(1—o)]E] T
Muitiplying (5.5) by the matrix Am» ov and performing some simple
0 &
transformations we obtain an equivalent equation

< (Vi-r)e A
(5.6)  det =0.
Aay ~

Denoting by )/ A=z, and w the roots of the equation
[wE, Ay V
det =0
¢ Fhm» wé>)

We find the relation L AN =w. Here the spectrum A depends on

@

the parameter w, and its choice naturally leads to the problem

(5.7) min wa M) ]
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(where the maximum is taken over the points of the spectrum). The
problem (5.7) was solved in [3] for the equation (5.3); in this case
& = &: = E and the operators A;, and A,, are Qoﬁmﬂasna by the
formulae

A\_S:.SHW?&T?5+:=.SL+==+».E+:=.E+»V
(at the interior vertices of the mesh). The eigenvalues' of A are wy. 4 ‘
loom|+oom (p, g=1, 2, ..., N—1) and the spectrum w lies
in the interval A|»+MIN. »Illv The optimal value of w is

determined by
2 2
(5.8)

~

t= — —
@op AIT._\»I_SEmN_w »‘T.—\N.Nl.._.,wl

The spectrum \ of the iteration operator then lies on the circle?
2%

The iterations converge uniformly, the process is numerically stable, and
we can state

THEOREM 3. For the ESEQ: (2.1)—(2.2) the quxo& of successive over-
relaxation (5.4) converges for any w, 1 < w < 2, and any initial approxima-
tion. For iterations with the optimal choice of w (5.8) the residual norm
decreases according to the formula

.
I lia(irofie " ®
Further developments and generalizations of the method of successive
over-relaxation are treated, for example, in [4]. We omit a detailed exposi-

tion of these results for the reasons mentioned above.

_ §6. The method of alternating directions

Considerable progress in the efficiency (rate of convergence) of iterative
methods for the solution of elliptic difference equations was achieved in
1955—56, when the American mathematicians Douglas, Peaceman and
Rachford in [5] and [6] proposed new processes, based mainly on the
“sweep” method. The sweep is an efficient way of solving special systems
of linear algebraic equations that arise in the finite-difference solution of
1

This is established by computing elementarily the result of the action of the operator on the functions
nm
L wﬂ: .sin g i
For w # wgy the spectrum of A lies on an ellipse whose major semi-axis determines the rate of

convergence of the iterations.

sin
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the heat equation:
up —u¥ 8%u .
(6.1) Falwu?mvaly (n=1,2, ..., N—1)

with the boundary condition, say,

62 (), ,+bu=9 « (5)  HPuv=v"
p

(Here u, is the unknown and ¥ is a known mesh function.) The obvious
and formally possible procedure of solving the system (6.1)—(6.2) is to
find the requisite number of solutions of the Cauchy problem for (6.1) and
then to look for the solution of the boundary-value problem (6.1)—(6.2) as
a linear combination of them. However, the presence of the large parameter
1/ in (6.1) makes this procedure numerically unstable.

The sweep method for (6.1)—(6.2) was proposed independently and
almost at the same time in different countries; in the Soviet Union it was
done in 1952—-1953 by I. M. Gel’fand and O. V. Lokutsievskii.! It is by
now widely known, and the reader should have no difficulty in finding the
necessary formulae in textbooks on numerical methods. The American

mathematicians proposed two constructions for iterative procedures for
the equation

(6.3) (F5)s nt (55), =frm

(in a rectangular domain).
In the first the transition from u” to u”*! consists of two ‘half-steps’.
1. First we find an intermediate function u* from the equations

(6.4) |I§|Eﬂ va“s.fhwww v“_al?.s (n,m=1,2,...,N—1).

Tyt

The system (6.4) splits into N — 1 independent systems (corresponding to
different values of m) of equations of the form (6.1), each of which is
solved by the sweep method in the direction of x (n). We have purposely
avoided specifying the boundary conditions in (6.3) and (6.4); formally
they can have the general form (6.2). Of course, a and § in (6.2) cannot
be completely arbitrary. This question has been studied in [7] and the
restrictions on a and g stated there have a natural physical interpretation?
and are satisfied in a very wide class of concrete problems.

2. The second half-step gives u”*! as a solution of the system
elllz*

(6.5) I.mﬂls = Amvw_.slfﬁw“wvet ~famn, m=1,2,..., N—1),

n,m

-

2 This work was published only in 1962, in the Appendix to the book by Godunov and Ryaben’kii [7].

Roughly speaking, we require that the heat equation »; = au — f with the boundary conditions (6.2) is
stable, and that its solution tends to a finite limit as 7 — «, with the limit function satisfying the
equation su = f. In other words, the operator » with the (homogeneous) boundary conditions (6.2)
must be negative definite.
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which for differing values of # also splits into independent ‘one-dimensional’
equations; they are solved by the sweep method in the direction of y (m).
In what follows we use a more compact form of writing this and similar
algorithms, for example,

(6.6) N i N .
) S () () -,
or
R e e N !

2) uvtt= Amla%”mvl :m;:ammv :*laL.

Finally, for the evolution of the error v¥ = ¥* — U (where U is the exact
solution of (6.3)) in the iteration process it is convenient to use a form of
the process with the intermediate step excluded:

82 y—1 82 42 1 32
AO.MV §<+puﬁmldg.mv ﬁml*»dml.ﬂmv A@'d%v A@LI.HMMMV vv.
It is worth emphasizing that the (finite-dimensional) operator Am — 1 %Iawv -

in (6.7) and (6.8) is realized in the form of an algorithm for solving
problems of the type (6.1)—(6.2), rather than as a matrix. The second
algorithm of the American authors, although it leads to a process with a
slightly slower rate of convergence, nevertheless has an important advantage:
it can be generalized to equations in three (and more) independent variables.
Its scheme (which we write down at once for a three-dimensional equation)
is the following: :

(0 == )+ ()

f

Ty+1 y2
u¥¥ —y* J2u | ** J2u\v
- (6.9) t m.v Tyr A 9y2 v - A%N ’
_ 3 W w2 vt 2u\v
r v T+ 1A%v IA%V -

According to the scheme (6.9) we first us¢ the sweep method in x to
determine the intermediate function u* from the system split into independ-
ent one-dimensional equations (for distinct values of y and z). Next we
compute the second intermediate function u** by sweeps in y, and finally,
the function u”*' by sweeps in z. In the form (6.9) the realization of the
method requires 2N* memory cells since both #* and u* are needed to
determine u**, and u” to determine #**! — u** In some cases this makes
the use of these algorithms on electronic computers difficult, and so it
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makes sense to give an algorithm of a different form, by writing (6.9) as

1) Amlamv :*Hﬁm._'aﬁmm‘f%w:il&.

(
_

(6.10) am 2) Amld'mlmnv uW =t Ammcve.»
L

ay? ay®
92 , 2u\v
3) Am_lamtumv uvHl kg Amv .

. a2 . . ) . :
Applying Am Iaw@lmv to the last equation in (6.10) and replacing Amla %Mlmv
u** by the right-hand side of the second equation, we obtain

92 iR YT 2u\v 82\ ( a2

(E—vip) (B—gm)wtt =w—(G) = (E—5) (73)
Here, in turn, we apply Tm.ia %IMV and replace Amlamv u* by the
right-hand side of the first equation in (6.10) we obtain'

82 a2 2y
(6.41)  (E—vzs) (E—t50) (E—v3m) wt =Ruv—1f,
where
_ 2 g2 82\ o2
(6.12) R=FE-+= A@+§v 4T Amlam&%i
g2 , 52 32
—T Am|a%v Am 1aml.§v o
In practice, (6.11) is realized in three steps:
1) u* is found from Am.|a%qu u* = Ruv—f;
. a2
2) then u** is found from Am|a|v u¥* = y*;
Ay2 ?
3) finally, u*** ?oB”AMiaMMIMV uvtt = yEx

Computation according to this scheme does not require the additional
memory: as u*(u**, 4**') is computed, we may “forget” u”(u*, u**).
However, the computation of Ru for T ~ 1 involves an error of

3
0O Amdﬁ_wiv (and such r, as we shall see, are necessary.)

! The difference operator R approximates a degenerate differential operator of the sixth order. The

structure of R is such that if u is given at all the mesh points, then Ru is determined at all the interior

. % mw w
vo_:a.?oom&.wﬁgmﬂ Am |a| Am 1a lov Am_ \,_.. m v mmu_moaamozﬁmgmnm&ﬁ_o&xﬁ
9z ay2 322

order. To determine u¥** uniquely from the equation Bu' = RuY — 7f, which is defined at all the

interior mesh points, it is enough to use the boundary conditions (6.2) of the second order equation
(6.3).

v+l
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Choice of iteration parameters. The approximate theory. The choice of
the parameters 7, is the essential factor determining the efficiency of the
iterative processes (6.7) and (6.9). The authors of the method proposed a
simple and elegant way of constructing sequences 7,, which we describe
here for the iteration process (6.9) of solving, for example, the first
boundary-value problem for Poisson’s equation in the (7 X 7 X =)-cube.
As a matter of fact, the theory carries over almost without any ogdmom to
the more general problem:

Lo@ErabW) et re@ 5 =1y 2)

with the boundary conditions
(6.14) o2 4 pu=g

Of course, a(x), b(y) and ¢(z) are assumed to be positive and « and § are
constant on each face of the cube; furthermore, we assume that the
difference operator

(6.13)

a a
‘WM&Aval.ﬂ. OASA?.

is strictly positive on the set of the mesh functions satisfying the boundary
conditions

.0 .
% s HBu=0{ . g§+p =0

x=7

(ap and By (e} and B)) being the constants in (6.14) that correspond to the

faces x = 0 and x = 7). Let ¢$?’ denote the eigenfunctions of this operator,

A, the corresponding eigenvalues, and /' and L' the bounds of the spectrum
(so that 0 < I' < A, < L'). We make similar-assumptions about

I.m b(y) %w m:al 5@ 3; mna use the notation 4%, I" <A< L" and

o, I" <At <{L" for the corresponding eigenfunctions and eigenvalues. In
the space of the mesh functions satisfying the homogeneous boundary

hs - 8 @ 6, @
conditions on the (# X 7 X m)-cube the operators — 5% 55 I@w % and
8 @ . .
—%%5 have common eigenfunctions es..m_. P= mg mevvmv with the eigen-.

e

values \,, A; and \;”, respectively. From (6.11) we conclude that the error
v” in the iteration process evolves by the formula

(6.15) AmIS: Z) (E—vusils) (B—Twngs) v+t = Rov.

The function v satisfies the homogeneous boundary conditions (6.2) and
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can be ox@m:aoa as a Fourier series in ¢:
= 2 CBg 9™ %7, fovli=1 X (6, q 21"

ﬁ. q T paqr

By (6.15) we find

o= 2 6, rQ (tvasi Ay 25 A7) 9707,

where
(6.16) Q (% A, A, A" =
L T A T T M T (T (A T A
= (T =Th) (1 <) (1 TAm)
_ 172 (WA AAM L A7AY) - T3
TIT R (VAN T NAT AR+ @AM MM T (M A AT
(Note that the lack of symmetry in the process (6.9) with respect to
the variables x, ¥y and z is only apparent, since A, \" and \" occur in Q
symmetrically.)
For every 7 < 0 and A > 0 we have IQ! < 1, and the process converges.
Further, it is obvious that
uM ,q, 7 D Q (vi; Ap, Ag, A7) 9P &1,
and, fixing for a while the :SBGQ of iterations v, it is natural to choose
the sequence {T;}i=1 by solving the problem

<
min max [ Q(ti; A, A7, A")
T A =1

(max is taken over [/, L'] X [I", L"} X [I", L']). Let { = min (! I", I""),
L = max (L', L", L") and note that it is sufficient to estimate [] Q on the

diagonal'! X' = A" = A" = A, I< A< L.

Thus, we consider
v

Tlaﬁi T 0,

i=1

mﬁ.
where Q(¢) =1 - AII.F@@ The graph of Q(¢) is shown in Fig. 3. For

5
§ < 0 < 1, we say that the set {£: Q@) < 8} is the f-interval and we

denote its bounds by A(6) and N(9) (see Fig. 3); the bounds of the
g-interval of Q(rA) are then A(8)/7 and T1(0)/r.

1 £ oan g T(A - A" A™)

Qﬁﬂ' AN Ay = h l_l A.ﬂ* y.\ ».\‘ PEV ?
T+ A" +27A" + A X') + 72 A" A" . Note that Q attains its maximum on the plane
A"+ A" + A" = const at the same point as P, that is, for X’ = A" = A", Every uo:: of the spectrum

I <A, N, A" < L is contained in some plane A, + A, + A, = const = A’ + A” + A", which intersect the
aSmoE: in (A, A, A), where 3A = 1"+ 2" + 0" w:m I<A< L.

where P(7, X', A", ") =
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We now choose 7, so that the left
end-point of the first f-interval coin-
cides with the left end-point [ of the ,, p
spectrum, that is, 6+
A@)/r, =1, or 7; = A(8)/l. Then 244
Q(r; A\) < 6 and, therefore, B2

~

v
]I @ (x:d) <Bon the whole interval

i={ . T,Hm 3.

ne) _,0e®
T o >§H_ Next, we choose

7, so that Sm left end-point of the second interval coincides with the
right end-point of the first:

A@®) T8 I (6) A(6)
o = ~>§ that is, T,=14 TOR
v
. ne _, (0
Now we can claim that [] Q(1:A)<<6 on _Hr = A >v g Continuing
i=1
in this manner, we obtain the sequence
= >M$ , To=—T, ‘lwmww. ey Ty =Ty WMNW , and after v iterations

ﬂm
ME; )<<® mpm < A%HMQIW%

The number v is determined by the condition
(6 e v-1
el > r>ze] -

Thus, by performing v iterations according to the scheme (6.9), we
diminish the norm of the error 87! times; weé continue the computation
with the same sequence 7y, 73, ..., T, until we achieve the desired
accuracy. On average, one iteration diminishes the error 6~ 11v times, and it
is natural to choose the parameter § so that 6'/* is minimized. This is
easily done if we use a table for 6'/7,

o |a®|m®]| v® | v@ | v |such as the table given here (for the -
problem Au =fin a cube, with N = 100

E

0.6 | 0.25|0.90] 6.5 {0.079| .7 |boundary conditions of the first kind,
0.65/0.20 | 1.46 | 4.7 [0.09] 5 |/ =1 and L ~ 4000). We use the

0.70{ 0.16 | 1.45 | 3.8 |0.095| 4 |, tation

0.75| 0.12 | 1.80 | 3.1 |0.096] 3

0.80| 0.10 } 2.2 | 2.7 |o.083} 3 | n 1(6) _ @
0.90| 0.04 | 4.0 | 1.8 |0.050| 2 | v(©O)=In 4 \E>§ VO =—7w
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(for the choice.of v, these functions need only be computed with a low
accuracy). It is clear that we have to take a cycle with v = 3 or 4
(0 = 0.75 or 0.7). The iteration parameters are as follows:
v=3 7 =2=012 1, =7-0.068=0008 7;=000053;
v =4 1, =0,46; T, =0.0177; t; = 0.00195; 1, = 0.000215.
The error in the iteration process decreases at the rate
[[04]] = [[2° e-0.0050/Ts,

where T3 is the time needed for the three steps of one iteration (6.9).
In the same situation, Richardson’s method gives the rate

01 & 1108 [ =002,

Taking into account that 753 > 37;, that the solution of the three-
dimensional equation with N = 100 requires 10° memory cells, which is at
present unrealistic, and, finally, that the efficiency of Richardson’s method
grows with decreasing N faster than the efficiency of (6.9), we conclude
that for the equation in (x, y, z) Richardson’s method is at present more
efficient than the alternating direction method. True, one can imagine a
situation where this is not so: consider, for example, the equation

Upy + Uyy + U +au =§

where a > 0 is such that the first eigenvalue A, satisfies 0 < A; < 1.)
The optimal value of ¢ is determined as the minimal point of the function

exp ﬁl 1n® :u%nﬁwwx\lsg >.§J . Without solving this problem we observe that

the choice of 8 is independent of L/I, that is of the concrete form of the

1 (0)

A GL The theorem below is stated in

system. We put ® = max T: 8-1.In
8

a general form, which takes into account only those properties of the
system that are actually used in the preceding analysis.
THEOREM 4. To solve the system

= D + Dyu + Dsu =,

where D; are commuting negative-definite operators whose spectra lie in
the interval [—L, -1}, the iterative process

u*—uV . v
- = Du*+ (D, + D) u¥—f,
v+
r——
—_— bN:*& |@Ng<.
T+
uVH e

= Dguvti — Dgu¥
Tv+t
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converges for any v > 0. With the special choice of a v-periodic sequence
of parameters 1; the norm of the error (or residual) decreases on average
according to the formula

KV .
ol et llesp (—77) » Ir i lirllexs (7).
% o~ 0-8.

Apart from the stated properties of the operators D;, the usefulness of -this
process depends mainly on the efficient procedure for solving a system of
equations of the form

"(E — wDju =

If in estimating IIQ we take into account only one factor for every point
; :

', A", A'"), we obtain an upper estimate of [jv”|, which is not, however,
too rough. Fig. 4 shows the functions Q(r,1) and Q(73}) in the example
with N = 100 (v = 3, 6 = 0.75; Q(r:7) cannot be shown on this scale).

It is clear that Q(r; M)Q(7, Q) differs little from 1 for 500 < A < 4000 = L.

3-8z
\l\\fw.ﬂ\«

476
04 /- L8
2 i1+0.57)°
g / Y Zz

Fig. 4.

The analysis of convergence and the EmoJ\ behind the choice of the
sequence of iteration parameters {t;} for the first procedure are virtually
the same as above. Here we determine v and {71, T2, . . ., Ty} from the
condition

(©7) i s —mnma T (1532)"

“ ._.u,._“ 1—wh 1—nh
T ALA

TXun TEom

1—g\2 . ]
The function Q(%) = Aﬂmv is shown in Fig. 5 together with the function

1 |ﬂ$ sgos corresponds to the process
+H_
E*Wﬁxz.c"@»:*..*lbwgelv {”@N A§<+»|l§.<v.

Clearly, the first process is more efficient; the choice of the optimal v is
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illustrated (for the same example with N = 100) in Table 2.!

[¢] A®G | I® | v@O) v (6) v
0.010) 0.84 | 1.23 | 24.9 [0.210| 22
0.040| 0.69 | 1.70 9.2 10.350 9
0.090| 0.56 | 1.88 6.9 {0.3680 7
0.4231 0.48 | 2.10 5.6 [0.375 6
0.160} 0.42 | 2.36 4.8 10.384 5
0.201) 0.36 | 2.64 4.2 10.382 4
0.250( 0.32 | 3.0 3.7 10.375 4
0.360{ 0.25 | 4.0 3.0 [0.340 3

We can state
THEOREM 5. To solve the system

mungl*lbng "\<

Where the D; are commuting negative-definite operators whose spectra lie
in the interval [-L, —I1 the iteration process

—uv .
Y% Du*+ Duv—1,

Ty+t
§<+»I|=*
Tyit = Du*+ Douv+t —f
converges for any v > 0. The special choice of a v-periodic sequence of
parameters {4, Ts, . . ., Ty} gives an iteration process in which the norm of

the error (residual) decreases in accordance with the formula

I
:c<__R__c..:mxwﬁlgxm:v, xlB%Ngo& F>menwm

By using this process, the problem with N = 100 and the accuracy

= 10-5 is solved in 30 iterations.> Above we have simplified the theory
somewhat, by neglecting the differences between the quantities I’ and 1,
and L' and L" and considering the minimax problem (6.17) not on the
rectangle [/, L'] X [I", L"], but on the square [/, L1 X [/, L], which
contains it. If there is a large difference in the position of the spectra, this
results in a loss of efficiency. A more accurate theory for the choice of 7
can be obtained by applying a fractional-linear transformation. The matter
will be explained in the exposition of the exact theory of the choice of
parameters (for the two-dimensional problem).

! By »u_a:m at each point of the spectrum A only one factor we increase the value of QQ. By computing

EQ at A =it can be shown that the coefficient of the first eigenfunction in the expansion of v”
amﬂowmom not faster than e~ 045V,
2 The solution equations of the type of (E — a weu v: = @ (with the corresponding boundary

conditions) by the sweep method requires O(NP) operations (where p is the number of independent
variables). Therefore the number of operations that are necessary to decrease || ? [, [0 || &1

times is estimated by the quantity O(N® 1n & .FWV.
m
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§ 7. The choice of the optimal sequence of iteration parameters.
Wachspress' theory ;

In [8] Wachspress proposes for solving the system of difference equations

a2u 92u

(F) T (GF) 0 = Trm
in a rectangular aoBBz (with boundary -conditions of the third WEQV the
iteration process

u* —u¥ u 2u \v
Am&wv |TA oy? ; —1

d<+»
74
“ L () ()

The choice of the sequences 7, and 7, of iteration parameters is based in
[8]1 on the exact solution of a Chebyshev-type problem for the function
Q(, {v’, ©''}). This result is important both from the practical point of
view (this choice of 7 appreciably increases the efficiency of (7.1)) and
also from the theoretical point of view because it explains the limitations
of the method of alternating directions. The theory of the choice of 7’
and 7" is much simpler for v = 2° than for the general v; as the require-
ment that ¥ = 2° does not cause any inconvenience in practice, we consider
only this case. The exposition that follows is in essence the same as in
Wachspress’ original work, with some, purely editorial, simplifications.

We note that the whole theory applies to the equation °

.NU&E\.L._I‘UNN« ”\

provided that: 1) D; and D, are negative, bounded, self-adjoint and
commuting operators, and 2) the solution of the system of the form

(E—Du=¢9 (=12

is considerably easier than that of the original problem. Below we clarify
what class of important problems leads to such operators. Just as in [8],
the only concrete features of the operators we use are the spectral bounds
for =D, and —-D,:

O<< 'KV, 0l VL.

The problem of choosing 7' and 7" can be stated as follows: to find a
sequence {t} = {t}, T1; Ty, T3; . . .} Ty, Ty} that gives
v

1—1A 1—1\
BE Bmx _ E : :

A‘N.Nv AITH‘N»\ . .Hl—la\‘m»\\

where v = 2° and the SmﬁB:E is taken over [/, L'] X [I", L"].
LEMMA 1. If we replace the variables X', \", 7', 7" in (7.2) by new

variables ', u", £', £" connected with them by a fractional-linear
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transformation
vr\ t.llﬁ y\:” —F_-I_Iﬁ\. " ~.+.ﬂt " __ T —r
g—r-p’’ g+r-p’ E qg+pt"’ : q—p-7

(where p, q and r are the parameters of the transformation), we can reduce
(7.2) to a problem with identical domains for the new variables
n<u,u" <1

. W A— g

7.2+ _ o

(7.2% Ewn,%m_wﬁ E rrf__ TFEw

The proof is by a simple <admomﬁos and is therefore omitted. However,
later we need the formulae for computing the parameters p, q, r and n of
the transformation; these are obtained from the system of equations
wdy=mn,uL)=1,u"¢")=n, u"L") = 1. We set

L' -r _ L'—L” _ ]
7.3) A=Srmm, B= om0, alﬂﬂml_'i,
@J]ANIP _A—ab
T4 sz, n|n||~w.1.
Then
= _ n(a—b)—2
(74 n=c—Ve—1, p="t—.
g=A-+nB, r=B+nA.

To solve the problem (7.2), we find it convenient to modify its statement
first in an obvious way.
LEMMA 2. The sequence {t} that realizes

M Y
(7.5) min max A S
E A A

{f} nsA, A=t

exists, is unique, and consists of the pairs of equal numbers t' =
1,2, ..., v. (Here 7; = 1/t;, 7' = 1/8;).

The proof of this lemma and the exposition of the corresponding
minimax theory for (7.5) has no direct bearing on the computation of 7
and is deferred until later. :

LEMMA 3. Let & <<ty <T...<<t, be an optimal sequence. Then
N/ty, n/ts, . . ., Wiy is also an optimal sequence (the same, but in reversed
order).

The proof follows from the identity

H

n/t—n/h t—a
T+>_l~ n/t+n/A _i. IL(\_

?Swowa £ =q/t,\'=n/Aand A €[n, 1] for A € In, 11) and from the uniqueness
of {t}.
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We now rewrite the product for v = 2% ‘
25-1 28-1 .
- ti—M bypsi—ME—M : ti—Mh n/t;—h
ﬂ :+>ME:+E+§+y|. ,:iazi
ﬂ..Hu» m“» ..“

(by Lemma 3, t,1_i="/t;). Further,

n 1 L n
t—A mii—h _ 107 Af.ﬂvl 1+7 T4 L .
i+Ah mii+A 4 n 1 /,..n
o B (r )+ (1 +7)
. R ' 1 n .
Introducing new variables A’ = I.: Tl. yv t =T AIl n v and taking
2V :
into account that A’ €[v, 1] for A€, 1], where v’ = T4 Ve obtain
leu
ti—A| 5, —2
e | T o= oo | M
So we have proved )
LEMMA 4. If {t5, to ---, ww& is the optimal sequence of order 2° on
the interval [n, 1], then ti= I.: Aﬁ + :V (i=1,2, ..., 2°Y)is the optimal
sequence of order 2°! on [n', 11. »
LEMMA 6. If £;,(i=1,2, ..., 25%),is the optimal sequence of order 2
2
on the interval [n', 11 and 1’ = I.—l\aﬂ. then
£ = f} :Iﬁ\ A4 |5,
(7.6)
1 1 . _
Bysy i =gt si\ L) o =12, ..., 27

is the optimal sequence 0\. the order 2° on [n, 1].

Next, we reduce the problem of finding the optimal sequence of order
' 257 to the problem of finding the optimal sequence of order 2572 etc.,
down to order 2°. The latter problem is Bmabu\ solved:

t—A t—1 |
min max I.IEEBmM: _ _w
t men<t t+A Ih; t--1

and ¢ is found from

t—n _t—14 . V.
i that is, t=}7q

Thus, the computation of the optimal sequence of parameters of length 2°

proceeds as follows:
1. We find n,, p, g and r by the formulae (7.3) in terms of the spectral

bounds I, L', I", L".

Iterative methods for elliptic difference equations 163
2. Next, we determine Ms_s, Ms_2, . . ., Mo from the recurrence formula
. 2 Vi _
M=y (i=s—1,5—2, ...,0).
3. We put £ =V 1 and consccutively compute 2*1 parameters (D
in terms of the 2' known numbers 2 (=1, 2, . . ., 2}
. 1 tmsey T
Rt i T e
i 1+ 1 . i
i =g )/ [ 0y, =1,2, .., 2,
4. Having found Hrm 2* numbers t#,i =1, 2, ..., 2°, we compute the
parameters 7; and 7;’ of the iteration mEoEsB
, ¢ . rh— ,
T nhmw W=l (=1,2,...,2).

The efficiency of the iteration process is easily found. For we have
shown above that

ul . Nm-»li
min max | [T |~ min, | mex | 1T 52| =
T L U)
In v = 2° iterations (7.1) we obtain an approximation whose residual and
error are estimated by ,

Il << 1r0llg* (s ), 1oVl << [ 0llg*(n, ).
The average efficiency of the process (7.1) (per iteration) is

=min max 1—7
T meshsi| 1HTA

r=—gz F g(m, 5). In [8] there is an estimate of g2(n, s), which shows

that

2
¢*(n 5)<hexp ey (v=20).

We do not reproduce the argument; an idea of the efficiency of the method
can be gained from Table 3,

S
1 2 3 4
n

0.002 3.8315.92 | 7.00 | 7.53
0.001 3.55 | 5.82 | 7.01 2
0.0005 3.26 | 5.71 ] 7.02

0.00025 2,98 {5.58 | 7.00
0.000125 2.71 | 5.44 | 7.00
0.0000625 | 2.44 | 5.29 | 6.98

w

S IES IO IR IR IR |
w©

-] =] =) Oy O D
=]

)
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which gives, for s = 1, 2, 3 and 4 and various n, the <mMCnm of
(s &HI%.:&S. s)-lnn=xlInn7.
It is clear that y is almost independent of 7 m:m that, for s > 3, it does
not change very much with s. The decrease of residuals (on average)

proceeds according to the formula
i
Il fr)e ™ @<y,

For Poisson’s problem Au = f with the 100 x 100 mesh (n w.o.ooow%vV a oMMmowm
8 iterations decreases the residuals approximately 900 times and a cy

6 iterations 3 X 10¢ times.!

H v_moo_n OF LEMMA 2. Suppose that the sequence {¢}, = {t, t2 ..., t,}
realizes

=ﬁy

.wll

BFEmM _ _ Y “lm.
-1 ti+

{t}n n=<AE i=1

It is easy to obtain some properties of {t}n (ti<<ti+)-

tH—A
i+ A

1) All the #; lie in [n, 11. If #; < n, then 3i7-<(0 on [n, 11,

d | t—h|_ d u—h_ 24 < 0, and such a sequence cannot be
Gty | tHA | diy t+R (t14-2)2
optimal.
< 1. n
In the same way we show that £, . Y o
2. Between any two zeros #; and #;, the function _ 11 5,1 | attains its

i=1

maximum q.

Assume that this is not so and let
n
t;—A —

Py g <4q,
i

max
1Aty

i=

We compute the derivatives along some direction in the (¢, tj.1)-plane

. 2 —BH—A2 (1—f)

d d tj—A fj—A _ (4544 Bz; . 9
(o5 Pan) (s ) =2 aatr N
We choose § so that Hwil?non and g8 > 1, that is, »A@ANWIF:

. n.wl? s.r.»i\,?
The ?:Qﬂo:. 9% Erath

H

AN\J N.~.+~ v mﬁﬁw 4 v
- Aylm dtjsq

1 Thatis, || rv || = [| 7 |[-e=0"9"".

is positive on [n, #;) U (¢4, 1] and negative on

uu.lv( n.~.+»|»\ “ %AOOH— —i_ w.‘v C Qu.+? :¢
ti+A tig+A | 1> 00n (@, ta).

FEEEERAARS
Piris b
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which shows that {¢}, cannot be optimal.

n
3) The function | [] 22
i=1

TR attains its maximum ¢ at the ends A

=g and
A =1 of the interval.

n
ti—A .
For : !NM T2 1son [n, ] a product of monotone decreasing positive
i=1

functions. Hence it is monotone and

n
me | Tase]= it -0

LEYES i

-
-
||

-~

Then, as above,

4 | n—3 [{20onmu,
@ | R Tc on (1, 1],

and, if ¢’ << g {t}ncannot be optimal.!
Thus, we have proved the existence of Chebyshev’s alternation, that is,
points Xy =9 < A, < Ay < ...< A, =1 at which
E n

ti—A H .
(1 (=01,...,n).

i=1

4) The sequence {ti, tay . . ., tu} is unique (its existence follows from the

continuity in {¢} of the function :H H_.ﬂw v Assume that there exists

2
another such sequence {7, T, . . -» T»}. Then the functions Q(t, A) and
O(r, 1), which have each a Chebyshev alternation on [n, 11 coincide in at
least n distinct points X\ € [n, 1]. Let PO = 0@, ) - Q(r, 2\):

.:S.L:s.tT.:?.L:is
NU Ay.v — i=1 i=1

n 1

[T €+2) @i4a)
i=1

and the zeros of P(A) must be zeros of the numerator. But the numerator,

which is a polynomial of degree 2n — 1, vanishes at A = 0, and is an odd

function of A. As it has » more zeros on [y, 11, it must be identically zero.
We consider now the function (z = {thy T = {7})

n
Ti—h ti—p

QAP »5 T, T\vm :.Iteld«.u_lt.

i=1

1A similar argument applies to the right end-point A = 1 of the interval,
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and establish similar properties for the sequence {f, T}, which realizes

min max [Q( A T, W)|=gq.
{t. Ttn n<A, U<t

1) All the ¢; and 7; € [n, 11. This follows from the fact that
d ti—p Atp

at; Gi+h (G M?

>0 and n<A, p<

and that a sequence {Z, T} with, say, #; < n cannot be optimal, because

then & |L—=k _AomoH: Au <L

PAESY
2) The function |Q(¢, A, T, p)| attains its maximum q in every strip
We compute

d ul&lv tj—p :.ilrvu (A-p)p (b W) ,
A&SiI di; ﬁ:._:y tip A 5 +2)2 tja+ A2

where p(\, u) = (¢} = Bth1) + (\ — )4 — Bties) = (1 = f)Au. To prove
this it is sufficient to choose § such that p(A, u) does not change sign in
the square in question, that is, the 0:36 p(\, p) = 0 does not intersect .
this square. By putting a = 7 — BtZ,1, b = £; — B4, ‘¢ =1 - we obtain
for the curve p(A, u) = 0 Em explicit formula

+bh
to () = MLT; ’

The behaviour of this curve is such that, if p(A, 1) does not change its sign
on the vertices of the square [0, 11 X [0, 1], then p(A, p) does not change
its sign on the whole square. Thus, to determine § we have the four

inequalities:

N
1. p(0, 0) <0, that is, uWA N.N_ v ,
7
. »lm
2. p(1, 1) <0, that is, mAlI,
Al.n..lnp
u&.ﬁln&.v
tiva (1 —t5n1)
tist (1+2541) ©

3. p(4, 0)<<0, that is, B

3

4. p(0,1)<<0, that is, g

It is easily checked that these' inequalities are compatible for any
0< < Lier: ‘Hence there exists a B such that the derivative

d d
A dtje Ilmmwﬂv

Li—p tin—R
TiFA LA

has one sign in the strip ; < u < #4; and

the opposite sign in the rest of the square. The assertion 2) is now proved. ‘

Iterative methods for elliptic difference equations 167

Clearly, the same applies to the bands r; < A < 74,4
3) The function |Q (¢, A, 7, p)| attains its maximum value g on the
boundary of the square. Suppose that it is not so and let

.:.\.?

t;+A

max|Q (¢ 1, T, p)|=¢ << ¢g. However, m is monotonic in the strip

nspst
n<A<r,,(becauseitisa bmoacoﬁ of @0m5<o monotonic functions). Hence

max max [Q( A, T, p)|= max [Q(, M, T, p)|=¢ <g.

nEAST n€<ust n<spst
d d»lvr . e . . . .
But o e R positive in the strip n < A < 7 and negative in the

remaining part of the square. And in that case the assumption ¢’ < q is
incompatible with the optimality of {#, t}n.

4) In the optimal sequence {¢, 1} ,we have #; =1, fori=1,2,..., mand
consequently the solution of the minimax problem is unique.

it

Put Q(, v A= [] F=. Then Q(, A, 7, 1) = O, 7, N)Q(T, 1, ) and
=1 :

max |[Q (¢, A, T, p) |=max|[Q (¢, T, 1) [max|Q (v, ¢, p) .
Ay 1 A uw

Let ¢4 = max IQ(#, 7, NI, g, = max 1Q(r, ¢, u)l. Let A, (u,) be the
A u

maximum point of 1Q(z, 7, M) (or IQ(r, ¢, u)) on [n, 1]. Thenq =q,4,,

and the set of maximum points of IQ(t, A, 7, p)l forms a rectangular mesh
ﬁ:ﬁ tsw?n in the square. It has been shown above that 1Q(¢, A, 7, u)!
attains its maximum on the boundary of the square and in the strips

Ti S XS T, 4 < p < f4y. Hence the points A, (u,) form a Chebyshev’s
alternation for Q(¢, 7, i) (or Q(r, ¢, u)) which contains the points A =

and A = 1. But the functions Q(¢, 7, A) and Q(r, ¢, A) which both admit
an alternation, although possibly with different amplitudes g, and gq,, must
coincide at at least n points of the interval [n, 1]. Hence, there are at least
n zeros on [n, 1] of

P(A) = mmp (ti—A) (T +3|%H—» (ti—A) (- A).

The polynomial P(A) is even of degree 2n — 2, and so it can have n posi-
tive zeros only if P(A\) = 0, that is r; = ¢,.

§8. Further development of the method of alternating directions

The theory of choosing highly efficient iteration parameters for the .
method of alternating directions rests essentially on two factors: the system
of difference equations is given in the form

Am.a.v b»g + @Nﬁ = .\'
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where

1) D, and D, are commuting negative-definite self-adjoint operators (on
the finite-dimensional space of the mesh functions); .

2) the solution of the equations (£ — 7D))v = ¢ ({ = 1, 2) is much
simpler than that of the original problem.

From the point of view of -content this leads to the following circle of
problems:

1. The domain is rectangular (to be specific, the (n X m)-square); in -
other domains the variables do not separate and the operators D, and D,
do not commute.?

2. The most general form of a self-adjoint equation with separating
variables (commutativity!) is

Tmismmjlfgmm?@is@:n»
(8.2) GEJIT:WIT%E

_rbmz E.S - e u.
3. There are general co:namQ conditions of the third kind,

du

og + pu’ = ¢, but a and 8 must be constant on every edge of the

square.
In that case we consider the following operators acting on functions of
one variable:

D= IallnTD:: oy —=— ma 22 Bulemo =

Qg —=— %.H + @Ng Tnlﬂ = O
(8.3)
Doy =-- wl + U, o3 —— S\ Z 4 Bau Jy=0 =

S S E\ — + Batt [y= =0

" These ovmn:oa are self-adjoint; they are negative-definite under certain
restrictions on the coefficients @, b, @ and g, which we do not intend to
analyse. As operators acting on functions u(x, y) defined on the
(m X w)square and satisfying the homogeneous boundary conditions, D,
and D, commute.?

! More precisely, one does not succeed in choosing D, ahd D, sa that Au =D, u + D, u and the conditions

1) and 2) are satisfied. -

The ooawcﬁﬁons_ scheme of the method of alternating directions makes fairly strong use of the fact
that the differential operator is approximated by the simplest five-point scheme. The solution of differ-
ence equations of a higher order of accuracy (say, 0(#*) or 0(h*)) requires some modifications even for
the simplest equation Au = f. These modifications were proposed by Samarskii ([11], 466) in both the
two-dimensional and three-dimensional cases. The analysis of convergence leads to functions on the
spectrum similar to those considered above, and the choice of the sequence of iteration parameters can
be based on an approximate as well as on the exact solution of the minimax problem.

2
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Let us now consider the class of concrete problems to which the
algorithmic scheme of the method of alternating directions is applicable,
though at present without a theoretical guarantee of success.

1. The form of the equation can be quite general, the only restriction
being the absence of the mixed derivative

a
(8.4) %aiﬁ s.wlw.f%m\ bz, y) 5

+A4(z,9) 5 +B (@ y) g +C @ yu=1.
2. The domain is practically arbitrary if the first boundary-value problem
is to be solved.
If the boundary consists of straight-line segments parallel to the co-
ordinate axes, boundary conditions of the third kind are permissible:
a = + PBu = @, with variable « and 8. The operators D, and D, are then

defined in the obvious manner. For example,
7} du Unti, m—Un-i,
AUZ&:.SHAmﬁQlﬂv +b:.5$.l:l.ll&.+ﬁ:.§.t?§,

and the system of difference equations

T
Un,m— 75 _a3+m m (Unt1, m—Un, 3v|&:| m (Un, m—Un_y, m)]—

2° 2’
[II\»: m (Ungy, m—Uny, m) FTCn. m Un, m=Tn, m,

with boundary conditions of the first kind on an arbitrary domain, or

boundary conditions of the third kind if .m is mm or Ww is easily solved by
sweeping.

A numerical experiment has shown that with the formal application of the
algorithmic scheme of the method of alternating directions the convergence
of the iterations often remains high even if the existing theory is not
applicable. For example, a large number of computations for the Laplace
equation has been performed by various authors in a domain obtained by
7 deleting parts of the (r x m)-square. As
y an example, consider the first boundary-
value problem for Au = 0 in the domain
shown in Fig. 6. The iterations proceed
according to (6.1) with the choice of
50 - the iteration parameters given by the
approximate theory for the containing
v/ (m x w)square (the mesh step & = 7/100:
0.00056, 7, = 0.00296, 73 = 0.0156,
. o p Ta = 0.0825, 75 = 0.436. The decrease
7 a7 Y4 of the residual || Au|| is shown in Table 4.

Fig. 6.

I
fl

T1

i
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The initial approximation was taken to be zero inside the domain, with
the prescribed values on the boundary. The convergence of the iterations
stops after the 25?% iteration; this is due to the influence of the rounding
error AD:e P.\Iwwlv . A similar pattern was observed in the solution of
problems in other domains of similar shape: the computation parameters
for the containing square give convergence close to the theoretical values
(for the square) (see [9] and {10]). However, attempts to generalize the
theoretical analysis lead to more modest results than the experiments.

y 0 5 |10 | 15 20 25 30 35 40
IAull 91.15 | .85 |.064 |.0047 | 00041 |.00026 | .00017 | .00026 |.00018

The -convergence of the method of alternating directions for non-
commuting operators. We first mention the papers in which the analysis of
convergence of the method of alternating directions is not based on the
assumption that D; and D, in (8.1) commute. In [9] and [11] convergence
of the iterations for (8.1) is studicd under the sole assumption that D, and
D, are negative-definite self-adjoint operators, without assuming that they
commute. The corresponding concrete class of problems is nearly the same
as the class of problems that allow a formal application of the algorithmic

. . b
scheme (nearly, because self-adjointness breaks down for the terms 4 =
and w v However, the results obtained in this case are relatively Boaomﬁ

suppose, as before, that the spectra of —-D, and —D, lie in the intervals
[, L'] and [I", L"), where I' and I" > 0. Then the iterations with the fixed
parameter T = »:\], I=min (/, I") and L = max (L', L"),
(E — tD)u* = (E + wDu¥ — 1f,
(E — Duv*t = (E 4 Du* — 1f,
.converge, and the rate of convergence of the error in the iteration process
is given by the formula

[]

(8.5) fovf s foofe ™V T

This estimate (for a single parameter 7) cannot be improved; it is easy to
check in the example of the equation Au = f that the bound (8.5) is
attained on the square. In this form, if we disregard the unexploited
possibility of varying the parameter 7,, this method has no advantage over
Richardson’s method in the rate of convergence, and it is substantially
inferior to it in its scope: Richardson’s method can be applied to problems
with mixed derivatives.

Significant progress in the analysis of the case when the operators do not
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commute was achieved in [12], however, at the expense of considerably
narrowing the class of problems. By considering a finite-difference approxima-
tion to the a@:waos
a du

(8.6) % a(, .s +op @ 5 =1y
(where the domain is a square, the boundary conditions are of the first
kind, and the five-point difference scheme is used) for sufficiently smooth
coefficients a(x, y) and b(x, y), Widlund constructs the iteration process

Am .Nv Aﬂ@\wimlmwnamhav Ad<>+]®lvz\c|‘.\,
. Ado\rllwww,w;%_ﬂv §<+»[Aa<>+«||§|wslv )

where A is a diagonal matrix whose entries are computed in a particular
way from a(x, y) and b(x, y). He proposes a method for choosing a
sequence of v pairs of iteration parameters {7}, 7i}i-, and obtains the
estimate

(8:8) o<t [ 1—c ()]
Thus, the average efficiency of this process is
(8.9) w=—Sin[t—c(5)"] >0 (+ zu\L.

i

The optimal length v of the iteration cycle can be computed from (8.9).
We refrain from discussing the practical applications of this result in detail,
because in this situation, and for sufficiently smooth a(x, y) and b(x, ¥),

it is evidently preferable to use the ordinary method of alternating directions
with parameters r; computed for the equation au,, + bu,, = f, where a
and b are the mean values of the coefficients a(x, y) and b(x, y) over the
domain. However, the modification (8.7) of the method of alternating
directions may prove useful exactly in the case of strongly oscillating a(x, y)
and b(x, y). (The main element of this modification is the replacement of
the identity matrix by the special diagonal matrix A).

In the estimates (8.5) and (8.8) there is a certain lack of rigour; the fact
of the matter is that these results are established not for the ordinary norm
of the mesh function; they are valid in terms of specially constructed norms,
which are close to the so-called integral energy. However, this circumstance
does not influence the value of these methods as a practical tool for the
solution of finite-difference elliptic equations. But we do not dwell on this
in detail.

The computational scheme of D’yakonov [13]. One general idea of
constructing iteration processes for the solution of the equation Du = f has
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been known for a long time. Namely it is recommended to use the process’

N

YU W puv—f  or  uwvtl—(E4tBD) u—BYj.

T

(8.10) B

The properties of B that are necessary to ensure the efficiency of the
iterations (8.10) are also known:

1. B must be easily invertible (in the sense that the determination of u
from the equation Bu = z for u must be considerably simpler than the
original problem).

2. The norm of the operator (£ + 7B™!D) must be as small as possible
that is, £ 4 tB~1D ~ 0, which means that B is in a certain sense close to
D. Unfortunately, it is so difficult to satisfy these requirements together
that the idea on its own, without a suitable construction for B, is of little
value.

D’yakonov apparently was one of the first people who drew attention to
the possibilities of combining this general construction with the ideas and
achievements of the method of alternating directions. He proposed several
constructions of B and developed the corresponding theory. If we disregard
the secondary details, we can distinguish at present three constructions of B.

1. The finite-difference analogue of the Laplace operator, B = A.

II. The finite-difference analogue of the fourth order operator.

92 02
(8.11) B= Amls ﬂv Amlqii.
The degeneracy of this operator makes itself felt in the fact that the
boundary conditions sufficient for the existence of B™! are the same as
for a second order elliptic operator.

III. The finite-difference analogue of the degenerate elliptic equation

(8.12) mmﬁm_laﬁ%ﬁn*.%ﬂvw%m'*qumhn l%w.vwmm|a» Amhan_:l%ﬂvu.

Regarded as a differential operator, (8.12) can be equally well be taken to
be a degenerate hyperbolic operator. However, the presence of E in the
finite-difference -approximation gives to (8.12) for sufficiently small values
of o typically elliptic features. :
The constructions (8.11) and (8.12) contain the parameters o,, o, and o
and the theory should recommend the optimal choices (in some sense) of

! Note that the operator B~! Dis not self-adjoint if B and D do not commute, but it can be replaced by a

self-adjoint operator after a change of yariables. For the iteration uV+ W\" Y4 B-iDyY 151 f -
after multiplying by D' # and setting u==D 172y turns into ¥ +1=2" (D128~ Iptizy v 4,
F=D'/2B~1f where p!/2B~ 1p1/2 i a self-adjoint operator. Convergence in terms of u and v is
studied in the usual way and leads to estimates for the norm of v. Returning to the original function we
note that || 7 || =(v, D)2 =(D1/2%, D1/2p)=(Dv, v)1/2 so that the matter reduces to a different
definition of the norm of the error v. (The operators B and D are assumed to be self-adjoint, and D is
assumed to be positive.)
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these parameters.! To invert any of the three operators B we need some

boundary conditions, and the boundary conditions® of the original problem
are mostly used. However, in principle we may also use a different method,
in which B is supplemented by some simpler boundary conditions; then the

function u* = (E 4 tB-D)uv — tB-If

does not satisfy the boundary conditions of the original problem and its
values at the boundary mesh points have to be readjusted so as to turn the
function u* into »”*!. This procedure complicates the question of converg-
ence, but sometimes one has to resort to it when the original boundary
conditions are too complicated for B to be easily invertible. An example of
the use of this scheme in a problem from elasticity theory with complicated
non-local boundary conditions can be found in [14].

Let us consider in detail questions arising in the practical application of
these constructions.

I. B = A (a good choice from the point of view of the second require-
ment imposed on B). It is standard knowledge in the theory of elliptic
equations that given a strongly® elliptic operator D there exist constants ¢,
C and C' such that for all u

{8.13) o(—Au, u) < (Du, u) < C(—Au, u) << C'(Du, w).

For our purposes it is essential that as a consequence of (8.13) the operator
—D2A-1D2 is bounded below and above:

(8.14) Uu, ) < —(DYV*A D2y, u) << L(u, u), 1> 0.

Thus, the spectrum of —DY*A-1D'2 lies in [/, L1. It is natural to expect a
similar inequality to (8.14) for the finite-difference approximations of D
and A, with / and L practically independent of the mesh size. Combining
(8.10) with Richardson’s method

v+ 1 v
AL — puv—j,
Tyt
we obtain a process converging on average according to the formula:
-v2/(I/L)
(8.15) fw¥)] >~ ]|° e .

However, each iteration with B = A requires the solution of the equation
Au = ¢, and we only have iteration methods to do that.* This fact

In this scheme the parameters are usually optimized separately: o is chosen so that the ratio of the
spectral bounds for D1/2B-1D 1/3 is as close to 1 as possible, and then the 7, are chosen, for example,
by the same arguments as in Richardson’s method.

Homogeneous!

That is, there exists a constant § > 0 such that (Du, u) > §(u, u).

It is worth drawing attention to the ‘rapid Fourier transform’ [15]. In its trivial form the Fourier trans-
form method, which requires the computation of ~N? integrals over N? points, does not stand up to
the competition of the iteration methods either in the number of operations (which is 0(V*)) or in the
possibility of generalizations: it is applicable virtually only to the Poisson equation Au = f on a rectangle.
However, Hockney succeeds in constructing an extremely rational scheme of computations, which
requires only O([NVnN] ?) operations (for N = 2P).
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determines the range of efficiency of the whole process: the operator D
can be quite general, but the domain and the boundary conditions must be
such that the method of alternating directions with a good choice of para-
meters (relating, so to speak, to the intrinsic iteration cycle for the solution
of the equation Au = ) is about as efficient as on the rectangle: one

must not forget about the competition from Richardson’s method (B = E).
In a rectangular domain the number of iterations needed to decrease Em
H@mﬁa:m_w ¢! times is of the order

o?z El.EI /\@Sv

Imnmc Tb 2.5 .“l»v mm\Bo::s&oaOmm::ﬁ:@amao:mmoH moE:mAiE

the accuracy €1) Au=y¢ and In ,Ml.»\@\a is the number of basic iterations (8.10).

The practical use of the method requires the solution of two more problems.

1) An estimate of the bounds / and L of the spectrum of DY/2A-1DY2,
We note that for this operator the smallest eigenvalue no longer corresponds
to the smoothest eigenfunction; this can be checked in the simplest
example, by taking

D= msm +a— m% s 0Lz, y<m.

2) It is not, apparently, necessary to insist on high accuracy in solving
the equation Au = ¢. The question arises of deciding the optimal number
of ‘inner’ iterations, related possibly to the ordinal v of the basic iteration.

D’yakonov considers the process with fixed 7 and the ‘inversion’ of A
is effected in a single cycle of iterations of the method of alternating
directions. Thus, the computation proceeds as follows:

1. We find the tesidual f* = Du” — f.

2. This is followed by one cycle (of length 0(InN)) of iterations by the
method of alternating directions for solving the equation Av = r’(beginning
with the approximation v® =0).

3. The resulting aocm: approximation v is used to correct the values
of ur W' = u’ + rv. (Homogeneous boundary conditions are taken for v.)

O::z [16] suggests a somewhat different scheme: we write (7.1) as
AuPtt = Au¥ + 1(Du” - f) and proceed as follows:

1.7 = Au’ + (DU’ f).

2. wP*' is found as a rough solution of the equation Au?*' = r¥(using
a single cycle of iterations of the method of alternating directions and the
initial approximation u”).

In both cases recommendations are given for the choice of r and esti-

1

mate the number of iterations as QTb N -In I.M.v i1 ~ 1/L.

1 Nikolaev has recently published a paper on this topic in Zh Vychisl. Mat. i Mat. Fiz 12:6 (1972).
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N
:.mm A E — oy %&lv AMio.m %mv In this case the solution of the

equation Bu = y is easily obtained by sweeps in the directions of x and y
( in an arbitrary domain for the first boundary-value problem, and in a
domain bounded by segments parallel to coordinate axes for the third
boundary-value problem). As for the second requirement that DYV2B-1p1/2
should be close to E, the position is worse than for B = A, The possi-

bilities of approximating .m.m_ by B™'D by a choice of the parameters o,

and o, can be assessed in the simplest example D = —A on the
(m X w)-square with boundary conditions of the first kind. We denote by

/ " - 92 92
A" and A" the eigenvalues of — 7 and e and compute the eigenvalues

AT A" . . .
TFom axom We omit the simple analysis of the spectrum

p of B'A:p=
w(V', X"); the choice of ¢ is aimed at making the ratio wmpp/imax as close
to 1 as possible. The optimal values of o in this sense are 6, = 0, =
1/V'LI;

1 1 1
:s:uiﬂ,inwlq. Pmin=p (,, ) =p (L, L) ~ 21
(we are interested in the case | << L). Thus ppy /Hma = 4/(I/L). Using

the process (8.10) with 7, chosen as in Richardson’s method, we obtain
the decrease in the norm of the error

174
—vk
flov)l = [0l e (z) a || 0 || e=vONT1E),

. a 8 ] 3

. B={E+o (g +5 )} {E—o(F+5)} =E+0B) =+ 0By,
First of all we consider the difference approximations of B, and B, in a
rectangular domain and the algorithm for solving equations of the type

(8:16)  {(E+0By) uln.m = tin, m+ 2 (U, m—Un—1, m) +

|_Im (Un, m—un, m-1) = Pn, m-

The stencil of the operator is shown in Fig. 7.
Considering for simplicity only the

first boundary-value problem (the bound-
ary conditions of the third kind lead to
obvious and insignificant changes in com-
putations), we easily determine the
unknowns u, ,(n, m=1,2, .., N-1)
from the corresponding equations (8.16) n~f z

<]
3 28
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starting in the bottom left-hand corner and moving along Ea Irows or
columns. In either case, the value of u,—s, m and Uy, m-1 are already known
at the time of computation of u, ,,. In exactly the same way we solve the
system of equations

@17 {(E+ 0By ufn, m=

q : ‘
= Un, SI!M (Y1, m—Un, §v . A:? mit— Ua. m} = Pn.m-

The only difference is that we have to start in the top right-hand corner
(N -1, N-1). The operators B, and B, have the following obvious
properties:

a2 32
(8.48) 1) B*=B,, 2) Twl@uﬁJr%, 3) B*=B.

This enables us to construct the following iteration process for solving
the Poisson equation Af = f:

(E+3 B)u*=(E—% By) w+of,

8.19
A v Am+mmmvge+»”AN‘\.W.N»VE*ITQ.}
For the solution of the equation [a(x, y)u.]l, + [b(x, y)u,]l, = f, the

operators B; and B, must be modified in the obvious way, for example
14 bn, m— W

ﬂ. ?S.S'zﬁn». SvlT ..\sl Azﬁ.ill::, SLV.

.:e

(8.20) (Bu)n,m== a

1
M.
The evolution of the error in the process (8.19) is given by
-1 ’ c -1 [
(8.21) %tuﬁm+m$v (E—+B) Am+ﬂm; (E—%B:) =
’ = S (o).

The theory of the optimal choice of the parameter ¢ which secures
min [|S(o)|| is given in {11] for the case of non-commuting operators
mw and B, of the type (8.18). Leaving aside some details, the result of
T11) is that, for the optimal choice of o (which requires a knowledge of
the spectral bounds for B, and B,), the process (8.21) converges at the
rate

—v.0 /L)
ol > fie®]le

(where I and L are the -spectral bounds for the operator (aw,), + (bu,),).
Thus, (8.21) is no more efficient and is much more limited in scope than
Richardson’s method.

However, the easily invertible operator B can also be used in the

standard scheme
(8.22) B(o) —
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In this case the parameter o is chosen so as to make the ratio of the
minimal and maximal eigenvalues of D'2B-Y(0)D'/? as close to | as possible,
and the parameters r, are chosen as in Richardson’s method. Corresponding
recommendations (for D = —A) are given in [10], where (8.22) is called
the ‘alternating triangular method with Chebyshev acceleration’; in the same
paper there is also an estimate of the rate of convergence:

(8:23) vl |[o? e 2V EVIE o o) gmvorn-1r2)
(where [ and L are the spectral bounds of ~A). In [10] there are also the
results of a numerical solution of the equation Au = f in the square,
triangle, and ring for various iterative processes. (We remark that
Richardson’s method in [10] is applied without taking into account the

recommendations [1] on ordering the parameters 7; and so the degrees of
the Chebyshev polynomials are low, of the order 10.)

§9. Therelaxation method

In [17] the present author proposed the so-called relaxation method for
solving difference elliptic equations. In [18] he obtained an estimate of
the rate of convergence (for the simplest case of the finite-difference
approximation of the Poisson equation Au = f in the square, with boundary
conditions of the first kind). It turned out that

9.1) Frofl o || 2] e

where the convergence exponent % is independent of the number of mesh-
points. In Bakhvalov’s paper [19], the convergence of this method is
studied in the case of the first boundary-value problem in a rectangle for
the general elliptic equation

%u Py %y du du
(9.2) Q55 + 201 5z 0y +ammml.%+§ﬂwm +numlw+§s”\

(where ay, a; and a are smooth functions of x and y). For the rate of
convergence the same estimate (9.1) is obtained. Finally, Astrakhantsev has
considered the convergence of the method for the difference approximation
of the third boundary-value problem in an arbitrary two-dimensional
domain with smooth boundary for the general self-adjoint elliptic equation

9 3 3 d F a
03) Fre@ g +50@ N 5 ta b o+
‘ a au
+g 0 (@, 1) g+ Au=1.
Using variational difference schemes that guarantee self-adjointness of the
finite-difference approximations to (9.3) and assuming that the coefficients

a, b, ¢ and A are smooth, he obtains in [20] an estimate of the rate of
convergence in a form that differs from (9.1) only in the definition of the
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norm. The norm of the error decreases according to the wond:_w

(9.4) o]l =[] [le™
and % is again independent of the number of mesh-points. w&.oé.éo
describe the algorithm of this method, its qualitative justification E&.
examples illustrating its efficiency in practice. We Bmohoamnm the estimate
(9.1) in the same way as in [18]. We limit ourselves to this weakest result,
since its deduction is completely elementary. The more powerful proofs of
{19] and [20] require special tools and estimates. . .

Qualitatively, the method is based on the following remark. Using, say,
the simple iterations

(9.5) W = uv 4 (AwY — )

with T o~ 1/L it is easy to suppress the high-frequency component
(corresponding to A &~ L) of the residual (3.3). As Homma.m ?m._oé-mnaa:o:ov\
component (A ~ ), it decreases as slowly as e=v/L; m:wm :. is, in fact, 2.5
suppression of this component that represents the main Em.moEQ .Om. this
problem. As shown for example by Fig. 5, this behaviour is not limited to
the simple iterations (9.5). We also note that the eigenfunctions for A~
are smooth with few changes of sign in the domain in question (the
smoothness increases with decreasing
A); on the other hand, the eigen-

« T T Te
. .
. »
: A
[ YT WU VO S T S WU SN S S SN U TN VA A S S S |

a) The residual 7 = Au — f on the basic mesh (.) elliptic operators and their

functions with A ~ L change
. . rapidly. This qualitative feature
" o is typical for the most general

finite-dimensional approximations,

* x and it is this feature that is utilized
in the construction of the algorithm
and determines the corresponding
range of specific problems.

We now turn to the compu-
tational scheme of the algorithm.
Let us start with an initial approxi-
mation u°. We perform a small
number of simple iterations (9.5),
choosing 7 to suppress the high-
frequency component of the resi-
dual. As a result, the residual
r’ = Au¥ — f becomes a smooth
function. This stage of the com-
putation is qualitatively illustrated

Fig. 8. in Fig. 8a.

' b) The residual R on the secondary
mesh (x); A, =3k

¢) The residual A(u — w) — f
on the original mesh
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If it were possible to find a function w solving the equation Aw = r”, the
problem would be solved, for then u = u” — w gives

AP —w) =r" + f—r =f At first sight the solution of the equation
Aw =r” would appear to be no simpler than that of the problem Au = f,
but this is not so. The reason is that 7 is smooth, and therefore so is w,
Hence we can find w-on a mesh whose step is greater than the original
mesh-size, which is easier, as there are fewer vertices and the convergence
of the iterations improves. Thiis, we define the function R on the mesh
with the greater step by setting R = ¥ on the common vertices. This is
illustrated in Fig. 8b where the step of the auxiliary mesh is three times
as large as the original step. We solve the difference equation

(©.6) A W =R,

where W and R are determined on the vertices of the supplementary mesh,
& is the difference operator approximating the same differential operator!
as A, but on the other mesh. From W we obtain the function w, which is
defined on the original mesh, by some (say, linear) interpolation. We now
amend the function uv: ov: = u¥ — w.

We compute ™ = Au® — f; this function is shown in Fig. 8c. The
following remark explains the picture: suppose that W,, satisfies the
difference equation on the secondary mesh

Win_3—2W3n +Wsn N
sn-s a}wn+ s :u?;nai =1,2, ..., 5—1),
and that w, (n = 0, 1, ..., N) is the linear interpolation of W to the

remaining vertices of the original mesh with the step 4. Then
A 0 if » is divisible by 3,

Wn g —2w0n +Wnys
h? -

3R, otherwise.

From the @9510». view of the residual norm, %~ is worse than u” (a rough
estimate gives [|7V]| =~ 1-5]|r*]]). However, 7 consists mainly of high-
frequency eigenfunctions, and in the mean it is close to zero. Repeating
the simple iterations (9.5) we suppress the high frequency part of 7 etc.
We remark that usually the step of the secondary mesh is only two or three
times greater than the original step, and so the solution of (9.6) need not
be a simple problem at all. Then we use similar method to determine W.
This is, rather vaguely, the qualitative description of the method. The
details are specified below, where we estimate its rate of convergence and
describe the experience obtained in its practical application.

Estimate of the rate of convergence: We consider the application of our
method to the solution of the difference equation

) Cnn=(Fz), H(5), = frm ule=0

! The boundary conditions for W are the same as for u; they are, of course, homogeneous.
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on a mesh of step & = n/N, where N = 2°. To avoid confusion and facili-
tate the understanding of the following exposition, we fix "our notation.
We shall be concerned with two. meshes: the basic one, whose step is A,
and a secondary one of step H = 2h. All the objects defined on the basic
mesh are marked by small letters and those on the secondary mesh are
marked by capitals. When we pass from functions defined on one mesh to
similar functions on the other we use the same letter of a different size.
Thus, let « , be the initial approximation, whose residual r° is expanded

in the Fourier series

N-t N-1
2 11/2
9.8 = 3 cpoe®9,  IPl=8=0 2 e
P, g=1 p, g=1
(Here oD ~vsin wd: ME%“ the exact form of @® 2 is used only once.)

We split the set of eigenfunctions into two subsets — the good, smooth
functions (p and g < N/2) and the bad, rough functions (p or g > N/2).
Accordingly, the space of all the mesh functions! splits into the orthogonal
sum of two subspaces: a good one and a bad one. We sometimes mark the
elements of these subspaces by the subscripts> X and II, respectively. In
this notation

P =y T Bl 8o Nrall << 8o 0 IP = lI7x I + I s 112,

We perform v iterations (9.5) with the fixed value of the parameter

™ In this case {1 — 1A < p = 0.6 on the bad part of the

— = h2__
T ==ht= .

5

U\]»

spectrum and |1 — A <1 on the good part. Hence we obtain the functions

™= M p. q(1—TAp, D 9@ D,
P q -

(9.9)
=ry by, <8, Irll<e-do

We consider now on the secondary mesh the function
(9.10) mwran%é? i=1,2, ..., WLM%]J

and find the function W,;,; satisfying the difference equation
CRE )R (AW)at, 27=Rai. o5+ | R || &2z, 25y Wir=0

Here E is an arbitrary function subject only to the condition | €[l < &,
where ¢ is to be determined later. Introducing &€ we emphasize that W is

1 vanishing on the boundary,
2 X and 11 are the initial letters of the Russian words for good and bad. (Transl.)
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mw::a only approximately by some iterative process which diminishes e~
aﬁ.:mm the residual of the original approximation W® = 0. In accordance
with the splitting r¥ = r} 4%, R = R® + R", we write W in the form
W =W* + W" -+ W° so that

Awhwv DS\M“.N.NN. Dgn”muw
AW°=|R||& W =W"=W®p=0.

(The superscripts X and II here indicate the origin of the function and
not the subspace to which it belongs.)

The next lemmas are useful in what follows.

LEMMA 1. Suppose that the function z, . is defined on the vertices of
the original mesh and that Z,; 5; is its ‘projection’ onto the secondary mesh
(that is, Z3;2; = 24;4;). Then

(9.13) Nz|<2yz.
The proof is obvious:
N’—1 . N'—1%
__N__Nu%..mmiu% D) 2805 <h]|z |
i, j= i, j=1

LEMMA 2. Let W be defined on the vertices of the secondary mesh and
let w be the linear interpolation of W to the basic mesh. Then

(9.14) lAw]l<< K|l A W

The constant K is independent of the mesh step and can easily be
computed, but we are not interested in ifs precise value.
PROOF. We compute

(2(aW)n m (n and m even)
_ 2w 2W :
A oz2 v.:; m+1 + A ox2 VS. m=1 A: even, m OQQV

©:15) (Aw)nm=1 | il
_ A oy? V:+_.5+A oy vzi.s (n odd, m even)

Lo (n and m odd).
It follows that (Aw), . is a combination of the values of AW, WEW and
) z

W . . . .
T at the neighbouring vertices. Using the triangle inequality and the

obvious estimates

2w aw
|5 <t ami | G5 |<iawi
. 92
(which follow from the fact that the operators .mw.ﬂ and 7 are negative-

definite and commute) we can easily establish (9.14).
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LEMMA 3. Let W be defined on the secondary mesh and let w be its
linear interpolation. Let a4 (p, q < N' = N/2) be the Fourier coefficients
of Aw. Then

, ke » h2
(9.16) ap. ¢=4p. ﬁlﬁ Ap,qFre7

- 4r.0

where A, 4, Ap.q and Ay 4 are, wm%mmmcwar the homz.m\ coefficients of

W, Amwﬂslv miﬁﬁw v

PROOF.
N—1N—t
Gy, q=h? gM X (B0 m P D=
N'—1N'—1 N'—{N'—1 N’—1 N'—t
M 2 (Awg)ai, 25+ %o M (Awg)zis, 25+ Nc Wo ADSGVE.NIL
St j=t =0 j=1 =0 =

Here, by virtue of (9.15), we omit the sum over ‘odd-odd’ vertices. Using
(9.15) again, we have
N'—iN'—1
ap,g=20* X D) (AW)zi 2iPair0i+
=1 =1
N'—-1N'-1
2w 2w
+h M_ DIy ﬁ ay® vﬁ.ﬁ..l ay* vmin. S@ +
i=0 j=1
N-1N'—1
2w 2w 1
+r 3D eﬁb?i: 0x2 Vﬁ,f\fﬁ 92 vE. 2542}

i=1 j=0

N'—1 N'—1
=4h? M 4 ADSJS.EGE.E+
3=1 u'»
N N'—1 N'—1N'—1 W

+h? ) N A.@%{vwrwgﬁeﬁi 25+ @ai-1, 25} —2R° x > A 72 evmw. ot

=1 j=ti

i=1 j=1
. N'—{ N'—1
N'—1N'—1 2W

+§ M M Amw,ww vx.NNAGE_NE.TG?ELV 2h* 2 2 ﬁmsn VM:E.H

i=1 j=1

sz\L N'—1N'-1

=H* 3 D (AW)at, 25 Pai 2+ 1 M M A e erﬁ.ﬁﬁm%vmﬁ&uf

i=1 j=1

2#1» N'—

+1 3 X AWHM\. Vmﬁmuywﬂww\mfﬁﬁ.

i=1 j=1

Accordingly, we put

v;m Mo
Ap, g+

(9.17) ap.q=Ap, ¢+ Ap, ¢
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where
N'—{ N'—1
N E]
Ap,g=H? M N_H (AW)gs, 25 OE: 3,
=i j=
N —1N'—1 -
[ (2, q)
AMV.A.@V k&ﬁu nlm.m M M A m.N\m vm._... Nu.emm. 2js
i i=1
N'—1 N'—1 Ji.
. - (p, 9)
4, =g M M A e vmr S.ewrw?
=1 j=1

We use here the fact that in the simple problem in question the values of
the eigenfunctions of & and A on the coincident vertices of the two meshes
are the same for p and ¢ < N' -1 (these ‘good’ p and g are the only ones
for which (9.17) is used below). In effect, this is the only point in the
proof where we make real use of the special form of the problem. The
equality

(9.19) o §) =0 §)

is accidentally precise. But it is related to the completely non-accidental
fact that, for small values of p and ¢, the functions ¢ and & approximate
one and the same eigenfunction of the differential Laplace operator. The
accuracy of the approximation increases with decreasing p and q. It is
useful to note that the proof goes through with almost no changes if the
‘good’ part of the spectrum is determined by the condition p, ¢ < gN,
where £ > 0 is an arbitrary small fixed number. This remark points to the
reserves that can be used in generalizing the proof. The most difficult to
generalize are the estimates below. Let us return to the function w, which
by (9.12) can be represented in the form

”NQNI*IE_HI_IEN.

Each of the terms on the right-hand side is the linear interpolation of

W=, W= and We | respectively. By (9.10), (9.13) and (9.14), we have

[Aw" || < K||AW? || = K[| R7 || < 2K -[| rx || << 2K,
vl < K AWEl << K || Rle << 2K ed,.

As to ||Aw*||, we have to estimate it more accurately. First of all

we decompose Aw* in the orthogonal sum Aw®=Auf - Awg. For [[Awg ||
we use the rough estimate

(9.20) [ Awz(I<|| A | <K [|AW* || =K || R* || < 2K || rx || < 2K,

To estimate Awkx we represent it as a sum of three terms according to
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(9.17): Aw} =z 42 + 3", - where

N'—1 N'—1 " N'=1 .%
D) Ap@®0,  z'= 3 I Mohp @0, 5= > - Medp, @@ 9.
P, g=1 p, g=1 », ¢g=1
Note that
(AW )31, 55=R3;, 25 = ?mvs.. 27 =
N'—
s G. )
M ¢p. g (1—7hyp, av<emm, mw M ¢p, g (1—7Thp, o) @3F; 3.
p, ¢=1 p, =1

From the orthonormality of the system ®% 2 we conclude that
(9.21) Ap, g=cp, ¢ (1—Thpg)" (p, ¢=1,2, ..., N'—1)

" .
hence z = r%, and we are done. Note that 4, , and 4, ,, are the Fourier

2w 2w .
coefficients in the expansions of F and—;z~, respectively. Therefore
N'~1
2
@22 {3 @} =G| <iam =i Eu<2iti<s,
P, g=1

and in exactly the same way

<[ AW || < 26

W
0x2

2
©23)  { S 45, 9°} " =
P, ¢=1

To sum up, we consider the residual of the corrected function # = u” ~ w;

we obtain
N\.(” DM\M\'\” >:<.|I,Nlnl>~§“ v—A ASNI_I Q\.ﬂl*lva —
=rv—(z+2 +2")—Aut—Awt—Awg =
=rp—{z' + 2+ Aum |+ Awe DSMV
and we already have estimates for each of the terms in the last pair of

braces. Now, starting with # we perform v additional simple iterations to
obtain the function #*”, whose residual is given by

12y =78 {7’ +7" 4 At + At -+ Awh);

here every term in r*” represents a v-times iterated component of 7, for
example, Z' = (E + 7A)’Z etc. Let us estimate these terms.

1 __Dmu T<pv || DEg__%mNm@%,N because this is a function in the bad
subspace. .

2) || Aw® || < || Awe || < 2Kedy, because || E-+7A <1 and || Awe]|
satisfies (9.19).

3) At || < || Awt || < 2Kp¥8, for the same reasons.
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N’—1
~ h2 .
4) 2 =(E+1A) 2 = 3 (1—1hp, )" yu(n.&r ¢@® 9. We estimate the

D, g=1

.m::oaos (1—7hy, ) A%, , = 12, .q) B\, 4 on the spectrum
P g P Q 5 P.-q P q

0 < 2,4, < 8/h%. By an clementary argument
5
ommm.wm ﬁ|© mmv m|ﬁ|o MmEmwv mew Emax “.<+».
Thus,
17 1< 55 L9 0 | <26,

p, g=1
Similarly,

2" 1< i.»a?

Adding all the estimates we obtain

lAu2v—fli< 89+ 2K 8op¥ - 2Keby + 2K8,p¥ -+ p28,.

<|_L

ia,» +4Kpvp2¥ << Ke. Then

| Au?y — f] < 3Ked,.

Starting with #*>” we repeat all the computations described above to obtain
the function u*¥ for which

JAuw — f|| << 3Ke || Auv — f|| < 9K2e28,,.

Now we choose & such that 9K?e? < e, say, € = (9K?)7!, and then we
have

HAuf — flI<< el Au® — £ = eB,.

The next lemma sums up the above argument; we emphasize that e and
v(e) are independent of the mesh size.

LEMMA. To reduce the residual of the arbitrary initial approximation
et times by the relaxation method it is sufficient

a) to perform 4v(e) simple iterations,

b) twice interpolate W to the basic mesh, and

c) twice solve the finite difference Poisson equation on the secondary
mesh with the accuracy e. (By solving with accuracy © we mean here the
reduction of the residual of the original approximation e times (see 9.11))
Now let Q(NV,e) denote the number of operations necessary for reducing
the residual ¢! times on the (N X N)-mesh. The assertion of the lemma
gives the inequality

QN, &) <CN*+20 (5 ¢),
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where C is independent of the mesh size (that is, of N). Expanding this

. . N _N ..
estimate (which means that the problem on the - X 5~ mesh is solved
. s N N .
using the auxiliary — X — mesh etc.) we obtain

O, )<CN*+20 - 4+4Q (- e) <.
...<CN*(1 gt )< O

Hence, at least for N = 2°, we have proved the following theorem.
THEOREM. To reduce by the relaxation method on the N X N mesh
the residual of the initial approximation et times it is sufficient to
perform at most C;N* operations.
The time for one iteration is 7 = A-N?, and so the assertion of the
theorem is equivalent to the claim that in the relaxation method the resi-
dual decreases on average according to the formula

il it e

where % is independent of the number of mesh points.

A practical form of the method. The estimate of the rate of convergence
obtained above is very rough. It would not be wise, therefore, to organize
the computation strictly on the lines of the proof (that is, for example, to
use the estimates obtained for v, & etc.) The form of the method used in
practical computations is similar, to, but not identical with that used in
deriving the estimate. This practical form is based on experience gained in
solving a number of problems. We list the relevant recommendations below.

1. For the basic iteration process we take Seidel’s method (see § 3, (3.20))
rather than the simple iteration (9.5), because it suppresses the high-
frequency component of the error more efficiently. Other iterations are
applicable, in particular, those using the sweep method. We mention here
a situation where the choice of the basic iteration process has to be more
,mvm&mo“ suppose that we have to solve the problem

with @ << b (more precisely, if the mesh steps in x and y are not the
same, with a/Ax? << b/Ay?).In this case the simple, or Seidel’s iterations,
liquidate well the harmonics that oscillate rapidly in y, but the damping
of components that are not smooth in x requires considerably more itera-
tions than in the case a/Ax® ~ b/Ay*.

2. The step of the secondary mesh is usually more than twice the size
of the original step (the computations were performed with H = 3k, 4h or 5h).
In current practice (N ~ 10?) it is sufficient to use two auxiliary meshes.
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3. The number v of iterations on the basic mesh after which we revert
to the auxiliary mesh is usually taken within the limits v =~ 1.5 + 3 H/h.
This choice is explained by the nature of the residuals of the corrected
function (see Fig. 8c): we require enough time for the residual at the point
of the auxiliary mesh to be averaged out by the residuals at the
neighbouring points (any iteration process for elliptic equations can be
interpreted as a process of averaging residuals).

4. Computing the residuals on the basic mesh (with the problem posed
on the first auxiliary mesh) gives sufficient control over the achieved
accuracy.

We now describe the results of certain computations and further specify

5.@ details of the algorithm. In [17] there is a description of the experience
with the solution of the problem

V.

———

o Vertices of the basic mesh
x Vertices of the auxiliary mesh (#* = 5k)
The boundary condition

ou _ . _
v+h M‘M = O_Hj*u that 1S, v = O_H_
Fig. 9

Au = f on the (40 X 48)-mesh (with equal steps in the directions of x and
y). The basic iteration method was taken to be Scidel’s, and convergence
was accelerated by the use of one supplementary mesh with H = 5h. Not
all the vertices of the supplementary mesh coincided with the vertices of
the basic mesh; moreover, the supplementary mesh covered a wider area
Ems the basic mesh. In this case we used boundary conditions of the third
kind on the supplementary mesh so that the interpolated function satisfied
the homogeneous boundary conditions of the original problem, as explained
in Fig. 9. The number v of iterations after which we reverted to the
mchmQ mesh was taken within the limits 7 to 12. In all these cases the
mean convergence (taking into account the time lost for reverting to the
auxiliary mesh) corresponded to

| 711 7 fleo-185-0r7,

srm.um T is the time for one Seidel iteration (in the case in question it is
basically given by' four additions and one division by 4). With this form
of the relaxation method the residual of the initial approximation was

1 About 3—4 iterations per second (on M-20).
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reduced 10° times in less than 10 seconds (these ooavcmmnosm .<<o3
performed in 1960 in connection with a problem of the dynamics of an
incompressible gas). The results were the same for the first and second
boundary-value problems. . . . .
Table 5 illustrates the convergence of iterations in the solution of the
difference equation Tt
Uy |T N@gxw IT Uyy = O. E._H‘ = ¢,

/ 0 8T 67T 2% T 327 LT "
b
0 36.3 1.18 048 L0029 — — 0.39
0.5 36.3 1.48 .063 .0030 00016 — 0.38
0.75 36.3 1.88 091 .0053 .00032 .000029 0.36
0.875 36.3 2.24 A3l 012 —_— — 0.32
0.9375 36.3 2.59 .20 .026 — — 0.30
Table 5

on the (54 X 54) mesh.! The first supplementary mesh .Sma H.w X 18
points, the second had 6 X 6. The scheme of the basic iteration cycle was

as follows: .
I. Six Seidel iterations are performed on the basic mesh

i I Y]
:Mﬁwﬂ ! :» —b) A:M.H, m+ gﬁ_w:x» +:u. m1 T Unta, m) +

4—2b
b it et Ut mpa)-

IL. The residual R at the vertices of the supplementary 18 X _.m Ew%
(H = 3h) is computed and, starting with W = 0, six of the same iterations
are performed for the equation -

Wie + N@S\u@ + .S\S\ = R, Wir = 0.

III. The residual R at the vertices of the (6 X 6)-mesh Q.& = 9h) is

computed and twenty iterations are used to solve the equation

Wow +26Wsy + Wy =R, Wi =0.

IV. The function W: = W - ,@.EEEE& is corrected and four more
iterations on the 18 X 18 mesh are performed.

V. The function u: = # = Wintepolatea 1S corrected. .

The time for this cycle is =~ 87, where T is the time for one ma.&@_
iteration (in this case two multiplications and five additions per point).

The table shows the decrease of ||#”|l for various values of b and the
average value of x(b) in the formula

71l o Nl roll e~

(in all the computations the initial approximation u°® was zero inside the

1 The computations were performed in 1965 and reported by the author at the second All-Union
Conference on Applied Mathematics.
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domain and equal to the prescribed values on the boundary). We compare

-these computations with the method of alternating directions in its most

efficient form, using the exact theory of the choice of the iteration para-
meters. A cycle of 8 double iterations in this case (n 2~ 0.001) reduces the
residual of the initial approximation by 3.5 X 10° times (a cycle of 16
iterations — by 4 X 107 times). From table 5 it is clear that a similar
result is obtained by the relaxation method in 24 iterations. However, an
objective comparison must take into account the time needed for one
iteration. For the method of alternating directions this is given by 16
additions and 16 multiplications per point. Taking into account the time
for these operations (on the M-20; the result for other computers would
be similar), the time-cost of one iteration of the alternating direction
method is about six times as high as for one Seidel iteration. Hence the
relaxation method is in this case at least twice as efficient as the method
of alternating directions. This, however, is only true in the simplest case of
the equation Au = f with equal steps in x and y. For the equation
%&.QA&. .S:WI”IITMW.ﬁASq w\v lw.m-“x

with complicated functions a and # the duration of the iteration is basic-
ally determined by the number of times we refer to the functions a(x, ¥)
and c(x, ¥) (if the volume of the operative memory does not permit the
storage of their values) and the ratio of the time-costs will be 2 rather
than 6. Nevertheless, if we wish to stay within the framework of commuting
operators, for which the exact theory of the alternating method of directions
holds, we may only consider the coefficients a(x) and c(y); these are,

as a rule, easily stored, and the ratio of the time-costs increases again.!

As for a name of this method, it is related to the well-known relaxation
method of Southwell, which has been used efficiently in the past in hand
calculations by groups of experienced computers. Its idea is to correct the
solution close to a high value of residual; the procedure depends on the
experience of the computer and leads to the rapid reduction of residuals.
The rules for the choice of the place and size of the correction were later
formalized, but they were not used in machine computations because the
expenditure of machine time on their complicated logic rendered the whole
method not very efficient.

It is natural to assume that the basis of the computer’s experience is the
art of guessing a rough solution to the Poisson equation with the residual

on the right-hand side. The same idea lies at the basis of the method
described.

! 1tis worth mentioning that the calculation of the time needed assumes here a qualified assembly

programmer. Using languages such as ALGOL or FORTRAN in combination with a mediocre compiler
we end up with the ratio that is closer to 2 because of the extravagant expense of time on the logic.
(This time would be negligible in the case of the assembly programmer, even is he is not very
experienced.)
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§ 10. The method of minimal residuals

The main idea of the method has been described in mw.._ 1. The solution
of a self-adjoint difference equation
, Abzvz.i. = fnm

minimizes the quadratic form

Q.OC Mm AU:vn.Sga.Slw Mm Un, mfn. m

(the sum is taken over the interior mesh points). The iterations of Eo
method of minimal residuals proceed by the following scheme. Starting
with an approximation u#”, we compute in some way a function v,
satisfying the homogeneous boundary conditions of the EOEQ.:. The next
approximation is taken in the form WPt = ¥ + 1Y, where 7 is chosen to
minimize the quadratic form (10.1). Various forms of this method ond.om-
pond to the various ways of obtaining direction v of the descent (this has
a decisive influence on the efficiency). The simplest way

A»OMV v = Duv |\ Q\ — wdv

leads to very slow convergence, as in the method of simple iterations.
Therefore in this form the method is not of great interest. A more general
form is usually considered, where the direction of the descent is given by
the equation

(10.3) Bwv = Duv — f.

N

The operator B must satisfy the following two conditions:

1) it must be easily invertible, that is, the solution of (10.3) for v must
be substantially easier than the original problem;

2) it must, as far as possible, accelerate the rate of convergence of the
iteration process. Writing the iteration step in the form

(10.4) W = u¥ o BHDw — ),

‘we observe the obvious similarity with the above arguments. The only
difference is that the choice of 7 is based not on an estimate of the spec-
trum of DY2B-1D'2, but on the objective test of minimizing the quadratic
form (10.1). In the first case the step is independent of Eo .9:83 .
approximation »”, while in the second case it depends on it in m_.:.ammm:sm_
way. This is reflected in the special feature of the method of B::Em_.
residuals: its actual convergence turns out to be much better than predicted
by the theory.. The estimate of the convergence is in terms of the spectral
bounds 0 < I < L of the operator DY2B-D'/% The convergence is not
slower than

(10.5) A..wmuwlveﬂmxw Alew%v .
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Although this is an upper estimate, it is not too coarse: one can work with
.an initial approximation #° (which differs from the solution by the sum of
two eigenfunctions corresponding to the end-points of the spectrum) such

that the rate of convergence is given from the beginning by (10.5). In
practice, the rate for the first iterations is usually much higher than (10.5).
Later it slows down, but by the time it reaches (10.5) the desired accuracy
of the approximation #” has usually already been achieved.

As for the operator B, we have available at present several concrete
constructions giving quite efficient results. We note that the ideal choice
would be B = D, in which case the process would be complete in a single
iteration. Although this is of no practical value, it indicates that B should .
be as close to D as possible. Let us consider the constructions for B that
are available at present (these constructions have already been considered
in §8).

1. B = A. This is the best choice of B from the point of view of the
second requirement, and the worst for an easy inversion. It may be
recommended for solving the boundary-value problems in a rectangle. The
equation Av = Du — f can be solved by the method of alternating direc-
tions with a small number of iterations, using the exact theory for the
choice of parameters. We remark that the boundary conditions for v are
here (as well as in the remaining cases) the homogeneous boundary conditions
of the original problem.

2. In [21] Godunov and Prokopov, starting with B = A, came to the
conclusion that rather than using a large number of iterations to obtain a
sufficiently accurate solution of Av = Du — f, it is better to use one
iteration. In effect, this is equivalent to the construction

82 82

(10.6) Br= Amlq%v Amlq@ll v.

The parameter o is determined by the condition that I/L should be as close
to 1 as possible (we recall that [ and L are the spectral bounds of
D'2B-1D/%), The latter problem is usually not very accurately solved, but
the numerical experiments in [21] show that relatively large variations of
o have practically no effect on the efficiency of the whole process. In the
same paper it is suggested (and confirmed by computations) that the
efficiency can be improved by varying ¢ with the iterations. In practice,
the efficiency of this method is comparable to that of the method of
alternating directions with the optimal choice of the iteration parameters,
although the theoretical rate of convergence is the same as for Richardson’s
method.

3. The construction

. , 9 8 8 F
(10.7) mﬂ,ﬂmiéﬂajr%i {E—o(Z+2)}
has been proposed by Marchuk and is subject to a theoretical and practical
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scrutiny in [10]. The results here are completely analogous (both from
the theoretical and practical aspect) to the results for the construction of
B (10.6). The parameter o is chosen in [10] experimentally; it can be
varied in a fairly wide band of values without a marked effect on the
efficiency.

As for the corresponding class of concrete problems, we may temark
that (10.6) may be used for solving self-adjoint equations (on condition
that the finite-difference equations are also self-adjoint) in fairly general
domains for the first boundary-value problem, and in the domains bounded
by segments parallel to the coordinate axes for the third boundary-value

problem.

Appendix

The author has recently performed some experiments aimed at clarifying
the real efficiency of the relaxation method of §9. They consisted in
solving the first boundary-value problem in the (z X m)-square for various
equations. The right-hand side f(x, ») stayed the same in all examples, as
did the boundary conditions (1 on one of the sides of the square, O on
the others). The size of the basic mesh was h, = 7/108, and the steps of
the first and second supplementary meshes were, respectively,
hy, = /36 and k, = w[12.

For the basic iteration process we took the following procedure: in
determining w41 (m = 1, .., N - 1) all the quantities Upm and u,,,, in
the difference equation were marked by the iteration superscript v + 1,
and all the u#,.1,, entries were marked by the superscript v. Thus,
winim =1, .. ., N — 1) are determined by simultaneous sweeps in »1;
there are no specific iteration parameters. The results of the experiments
are given in Table 6 which shows the equation, the stencil of the differ-
ence scheme, and the number 7, of the basic iterations after which the

process reverted to the supplementary mesh:

Table 6
No. " Equation n Tagi
1 Upy Y lyy =f 4| ~ g038Y
2 8 042
3 10 m.o._me
4 | gt 19Uy iy, =f 00509 | 10| ~ 038
o05 204 0.05
895 4.05
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No. Equation Stencil x“” ‘ 71l
~04,07 04
) /| /
5 Upe + 16Uy +0.Tu,, = f 10 I
04  L7-0.4
044 !/ 04
6 Upy T 16Uy, YUy, =f p -4 / 10 £-0.18v
04 1 -04
0./ 0.6
7 Uge + 1.2y +0.5uy, =f 04148 104 | 8 e 013Y
8 uO N.o.mumc
9 Upy = 120y +0.5uy, =f 10 e 013
10 Upx + AUy, +0.5u,, =f 8 e 037
11 Upe T 14U,y tuy, =f 8 g 018
Table 7
No. Example 3 Example 6 Example 10
0 355. 355.
1 195 19.6 214
2 .061 33 24
3 .00058 044 .0043
4 .0000064 .0085 .00012
5 .000000080 0018 .0000043
w .00042 .00000016
.00010 0000000051
8 .000024
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The average efficiency per iteration is given by the expression
o] ey, where v is computed by the formula v -
I7° is the initial residual, lI7* the residual of the final approximation, and

v the effective number of iterations (counting all the operations relating to
the use of the auxiliary meshes as 2.5 iterations on the basic mesh per

cycle).

tions in
approxi

meshes

resulting function u is marked 2, etc.

(1

(2]

(3]

(4]

(5]
(6]

7l

(8]

(9l

[10]

Table 7 gives an idea of the nature of decrease of residuals with itera-

mation and 1 the residual of the function obtained after n, itera-
tions on the basic mesh. This is followed by a correction, using auxiliary

R. P. Fedorenko

in li7*} and

< |-

1

Examples 3, 6 and 10; here O indicates the residual of the initial

and #n, more iterations on the basic mesh; the residual of the
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