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Abstract

Computational codes for direct numerical simulations of Rayleigh-Bénard (RB) convection are compared in terms of
computational cost and quality of the solution. As a benchmark case, RB convection at Ra = 108 and Pr = 1 in a
periodic domain, in cubic and cylindrical containers is considered. A dedicated second-order finite-difference code
(AFID/RBflow) and a specialized fourth-order finite-volume code (Goldfish) are compared with a general purpose
finite-volume approach (OpenFOAM) and a general purpose spectral-element code (Nek5000). Reassuringly, all
codes provide predictions of the average heat transfer that converge to the same values. The computational costs,
however, are found to differ considerably. The specialized codes AFID/RBflow and Goldfish are found to excel in
efficiency, outperforming the general purpose flow solvers Nek5000 and OpenFOAM by an order of magnitude with
an error on the Nusselt number Nu below 5%. However, we find that Nu alone is not sufficient to assess the quality
of the numerical results: in fact, instantaneous snapshots of the temperature field from a near wall region obtained for
deliberately under-resolved simulations using Nek5000 clearly indicate inadequate flow resolution even when Nu is
converged. Overall, dedicated special purpose codes for RB convection are found to be more efficient than general
purpose codes.

Keywords: Direct Numerical Simulations, Rayleigh-Bénard convection, heat transfer.

1. Introduction

Rayleigh-Bénard (RB) convection is the flow driven by
buoyancy forces when a fluid layer is heated from below
and cooled from above [1–4]. The main governing pa-
rameter for RB convection is the Rayleigh number Ra
which is the ratio between the destabilizing buoyancy
and the stabilizing viscous and diffusive effects. For
sufficiently large Ra, RB flow becomes turbulent. To
understand the flow physics, direct numerical simula-
tion (DNS) is in principle a straightforward approach
that can be used to study turbulence dynamics and heat
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transfer. For low Ra this is now routinely done. For
higher Ra however, it is much more challenging, though
there are many scientific questions. For example, how
does the heat transfer scale with the Ra number in the
regime of very high Ra numbers (Ra & 1014)? This
regime, referred to as ‘ultimate’, is characterized by an
enhanced heat transfer and associated with a transition
to fully turbulent boundary layers [5–7]. DNS, provided
it achieves proper accuracy, could be very useful in pro-
viding a deeper insight into the nature of this transition
and the properties of this ultimate state. Unfortunately,
DNS becomes exceedingly demanding as Ra increases,
since turbulence produces smaller flow scales that need
finer spatial resolution and proportionally small time
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steps to track their dynamics. For Ra where the ultimate
regime is expected the needed computational power is,
at present, prohibitive and understanding which numer-
ical code is most cost efficient is a key issue to establish
a roadmap for the computer simulations of turbulent RB
convection.

Over the years, several codes suitable for DNS of tur-
bulent RB convection have been developed. We com-
pare four of these codes. The first is based on the work
by Verzicco et al. [8, 9] in which a second-order en-
ergy conserving finite-difference method is applied. For
the periodic domain simulation we use the AFID code,
which was developed by Van der Poel et al. [10]. For
the cylindrical simulations we use the latest version of
RBflow, which is an optimized version of the code used
by Stevens et al. [11, 12]. The second code is Gold-
fish by Shishkina et al. [13–15], which is based on a
finite-volume approach and uses discretization schemes
of fourth-order in space. Goldfish can be used to study
turbulent thermal convection in cylindrical and paral-
lelepiped domains. The third code is a general pur-
pose open-source code Nek5000, based on the spectral-
element method described by Fischer [16]. This code
is designed to handle a large variety of flow problems,
and was also used in the context of RB convection
[17, 18]. The fourth code is an open-source software
package OpenFOAM [19]. More precisely, its widely
used second-order finite-volume scheme was selected
for the comparison.

In this study, we compare the four codes in terms of
computational efficiency and quality of the results, with
a special focus on the heat transport by the turbulent
flow, measured by the Nusselt number (Nu). The effi-
ciency of the codes is assessed in relation to their com-
putational costs and the capability to achieve grid con-
verged results. We simulate RB convection in three dif-
ferent geometries, i.e., a periodic domain, a cubic con-
tainer, and a cylindrical container. Experiments for RB
convection are typically conducted in a cylindrical tank.
A major challenge to the DNS is to handle sharp gra-
dients in the boundary layers near the walls as well as
to capture thermal structures (plumes) that protrude far
into the bulk of the flow.

In this paper we perform a convergence test at Ra =

108 and Pr = 1 in which we compare several levels of
mesh refinement. We show that all four codes produce
the same Nu number when appropriate spatial resolution
is used. At high resolutions, the results become practi-
cally identical, taking into account a small uncertainty
due to the finite averaging time. When we increase the
Ra number for a fixed spatial resolution, we observe, not
surprisingly, that for all codes eventually the resolution

becomes insufficient for accurately resolving the turbu-
lent flow. However, the Nu number calculation seems to
be more robust against deliberate underresolution in the
higher order codes like Nek5000 than in the lower order
codes. In this context, Nek5000 follows the theoreti-
cal scaling of Nu versus Ra better than the others. This
might suggest that, for a given number of grid points,
the Nek5000 code is capable of correctly capturing the
flow physics even when the other codes fail. A direct
inspection of some instantaneous snapshots of tempera-
ture in the near wall region, however, clearly shows that
this is not the case since the temperature distribution
displays the footprint of the underlying discretization.
The conclusion is that the evaluation of the Nu alone
is not a sufficient criterion to assess the quality of the
results that, instead, should be assessed by evaluating
more than one quantity. In this paper we also discuss
some other advantages and drawbacks of the compared
codes.

The remainder of this paper is organized as follows.
In §2, we describe the governing equations of RB con-
vection and the geometries of the domains included in
this study. The codes are described in more detail in §3
and the results are compared in §4. Last, a summary and
conclusions are given in §5.

2. Governing equations and evaluation of the Nus-
selt number

In this section we present the mathematical model and
introduce the methods adopted to evaluate the Nu num-
ber. We consider RB convection in three different ge-
ometries: a periodic domain, a cube, and a cylinder.
Every considered RB cell is characterized by a width
D and a height H. A flow in any RB cell is deter-
mined by the dimensionless parameters, which are the
Rayleigh number Ra = gβ∆H3/(νκ), the Prandtl num-
ber Pr = ν/κ, and the aspect-ratio Γ = D/H. Here g is
gravitational acceleration, β the thermal expansion co-
efficient, ∆ the temperature difference between the up-
per and lower plate, ν the kinematic viscosity, and κ the
thermal diffusivity of the fluid. In this study, we con-
sider Γ = 1 for all geometries, and Pr = 1, which means
that the inner length scales of the velocity and the tem-
perature fields are of similar order.

In the numerical simulations, we solve the incom-
pressible Navier-Stokes equation with the Boussinesq
approximation to account for buoyancy effects. The
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governing equations read

∂u
∂t

+ u · ∇u =

√
Pr
Ra
∇2u − ∇p + θez, (1)

∇ · u = 0, (2)
∂θ

∂t
+ u · ∇θ =

1
√

PrRa
∇2θ, (3)

where u is the velocity, p the pressure, θ the tempera-
ture, and ez the unit vector in the vertical direction anti-
parallel to the gravitational acceleration. Here lengths
are expressed in terms of H, velocities in terms of free
fall velocity U =

√
βg∆H, and temperatures in terms

of ∆. No-slip and constant temperature conditions are
imposed at the plates, and no-slip and adiabatic condi-
tions at the sidewall. We do not simulate all geometrical
configurations with all codes, since not every geome-
try is feasible in every code. For the periodic domain,
we compare AFID and Nek5000, and for the cubic con-
tainer Goldfish and Nek5000. The cylindrical domain
is simulated with all four codes included in this study.

One of the main aspects of RB convection is the heat
transported by the turbulent flow from the lower to the
upper plate. The heat transfer is quantified by the di-
mensionless heat flux, i.e. the Nu number which is the
ratio of the actual specific heat flux to the purely con-
ductive counterpart. Following [11] we consider sev-
eral ways to compute Nu. First we consider those of
them, which are related directly to the gradient of the
temperature and to the convective heat transport. As a
function of the vertical coordinate z, Nu is defined as
the average heat flux through a horizontal cross section
of the domain [20], Nu(z) = −〈∂zθ〉A +

√
Pr Ra〈uzθ〉A

where 〈·〉A denotes the average over a horizontal cross
section A and in time. From the no-slip boundary con-
ditions, it follows that the Nu numbers at the lower and
upper plate, denoted by Nulo and Nuup respectively, can
be calculated from the average temperature gradient at
the plates only. We also define the average of the two as
Nupl := (Nulo +Nuup)/2. The third definition is obtained
using the volume average Nuvol := 1 +

√
Ra Pr〈uzθ〉V ,

where 〈·〉V denotes the average over the complete vol-
ume of the domain. Note that these definitions of Nu
are averaged over time as well.

Two more definitions can be obtained from the global
balance of energy. We can derive a relation between
the Nu number and the kinetic and thermal dissipation
rates [21]. The kinetic and thermal dissipation rates are
ε :=

√
Pr/Ra(∇u)2, εθ := 1/(

√
PrRa)(∇θ)2 and the

Nu number can be calculated from the kinetic and ther-
mal dissipation rate respectively as follows: Nukin :=

1 +
√

PrRa 〈ε〉V , and Nuth :=
√

PrRa 〈εθ〉V . These rela-
tions from the global balance of energy are sometimes
used to assess the quality of DNS of RB convection. If
the simulation is well resolved, the global balance of en-
ergy is respected accurately. When averaged over time
Nu calculated from the dissipation rates agrees with the
other definitions of the Nu number. Note that the con-
verse is not necessarily true as will be illustrated in §4.1.
In particular, if some definitions of Nu agree with each
other then this does not automatically imply that the res-
olution is adequate.

Being an integral quantity, Nu is one of the main char-
acteristics in RB convection and is, therefore, a natural
quantity to investigate. Of course, besides Nu, there are
other quantities describing the turbulent RB flow that
one could include in a comparison. A good prediction
of Nu does not automatically guarantee that other quan-
tities are approximated accurately, in particular higher
order moments will converge less easily. However,
the converse holds, i.e., Nu predictions will correspond
closely if the solution is accurately captured. In the
present comparison study, we focus mostly on Nu, be-
cause it is one of the most important quantities and it
gives a first indication of how well different codes per-
form.

3. Numerical methods

In this section, we provide a brief description of the four
codes that are compared. Detailed information can be
found in the mentioned references.

3.1. AFID/RBflow
The second-order finite-difference scheme has initially
been developed by Verzicco et al. [8, 9] for cylindri-
cal containers. Time integration is performed with a
third-order Runge-Kutta method, in combination with
a second-order Crank-Nicolson scheme for the viscous
terms. RBflow, which is used for the simulations in
the cylindrical domain, computes all viscous terms im-
plicitly. The open-source code AFID, specialized for
domains with two periodic horizontal directions, uses
an explicit scheme in the non-bounded directions to im-
prove scalability of the code [10]. In AFID, the pres-
sure is solved using a fast Fourier Transform (FFT) in
the horizontal directions by means of a 2D pencil de-
composition [10].

3.2. Nek5000
The open-source package Nek5000 is based on the
spectral element method, which is an essential exten-
sion of the standard finite element method to the case
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of higher-order basis functions. In this case, the ba-
sis functions for the velocity and the pressure are ten-
sor product Lagrange polynomials of order N . Details
of the code are found in Ref. [16]. The spectral ele-
ment method has been used successfully for DNS of
RB convection [17, 18]. We use the so-called PN -PN
formulation, based on the splitting scheme in Ref. [22].
This means that the spectral elements for the velocity
components and the pressure are both order N . In the
more traditional PN -PN−2 formulation the pressure is
treated with order N − 2. Slightly more accurate re-
sults can be obtained with the higher order approxima-
tion of the pressure in the PN -PN formulation for mod-
erately resolved turbulent flows. In our simulations, we
use N = 8, which is similar to what was used in DNS
of other turbulent flows in [17, 23, 24]. The viscous
term is treated implicitly with the second-order back-
ward differentiation formula, in combination with an ex-
plicit second-order extrapolation scheme for the convec-
tive and other terms. The linear system for the velocity
is solved with the conjugate gradient method using Ja-
cobi preconditioning. The linear system for the pressure
is solved with the generalized minimal residual method,
preconditioned with an additive Schwarz method.

3.3. Goldfish
The computational code Goldfish is based on a finite-
volume approach. To calculate the velocity and tem-
perature at the surfaces of each finite volume, it uses
higher-order discretization schemes in space, up to the
fourth order in the case of equidistant meshes. Gold-
fish has been used to study thermal convective flows
in different configurations [13–15], in cylindrical and
parallelepiped domains. For the time integration, the
leapfrog scheme is used for the convective term and the
explicit Euler scheme for the viscous term. Although
formally first order in time, the accuracy is close to
second-order in convection dominated flows [25, Sec-
tion 5.8]. Note that due to the von Neumann numerical
stability of the chosen scheme, the fourth-order spatial
discretization requires asymptotically at least 4/3 times
finer time stepping than the second-order scheme [26].
Due to the regularity of the used computational meshes,
direct solvers are applied to compute the pressure in
cylindrical and Cartesian coordinate systems. Thus,
when the RB container is a cylinder, FFT is used in two
directions. In the case of a parallelepiped RB container,
the grid regularity also allows separation of variables.
In this case, the corresponding eigenvalues and eigen-
vectors for the pressure solver are calculated and stored
at the beginning of the simulations. The code is quite
flexible in parallelization, including parallel I/O, and is

characterized by high modularity and is applicable to
different configurations of turbulent thermal convective
flows.

3.4. OpenFOAM

OpenFOAM is a widely used open-source second-order
finite-volume software package [19]. Although Open-
FOAM offers many different options, we use the imple-
mentation of a standard solver in OpenFOAM, which
would be representative for typical engineering applica-
tions. A linear interpolation scheme is used for the con-
vective term. The equations are solved with the PISO
algorithm. The default implementation of the second-
order Crank-Nicolson scheme is used for time integra-
tion. Furthermore, we do not use the “non-orthogonal”
correction for the non-orthogonality of the mesh.

4. Performance comparison

In this section, we present the results of the sim-
ulations using two specialized RB convection codes
(AFID/RBflow and Goldfish) and two general purpose
codes (Nek5000 and OpenFOAM). Our findings shed
some light on the issue of the relevance of general pur-
pose codes for moderate Ra number turbulence. We first
discuss a convergence test for a moderate Ra = 108, for
which a fully resolved DNS is easily affordable. A com-
parison in terms of quality of results and cost is made in
§4.1. Finally, some results at higher Ra numbers and
fixed spatial resolution are shown in §4.2, illustrating
the inevitable loss of accuracy with significant rise of
Ra.

The simulations with AFID/RBflow, Nek5000, and
OpenFOAM, are all performed on Cartesius (SURF-
sara). The simulations with Goldfish are performed on
SuperMUC of the Leibniz-Rechenzentrum (LRZ). All
the simulations run on Cartesius are performed on the
same type of ‘thin’ nodes with Intel Haswell processors
clocked at 2.6 Ghz. Similar nodes were also used on
SuperMUC. Hence, we expect similar performance on
these computing platforms.

4.1. Convergence test at Ra = 108

Here we present a classical convergence test in which
a number of grid refinements is undertaken to assess
the sensitivity of the results to spatial resolution. Be-
cause of the fundamental differences between the spatial
discretization techniques, the simulations on the differ-
ent levels of grid refinement need to be performed with
slightly different meshes. For a fair comparison, at any
grid refinement level, the total number of grid points or

4



Number of gridpoints
10

4
10

5
10

6
10

7
10

8

N
u

28

30

32

34

36

38

40

42

44

Number of gridpoints
10

4
10

5
10

6
10

7
10

8
N
u

28

30

32

34

36

38

40

42

44

Number of gridpoints
10

4
10

5
10

6
10

7
10

8

N
u

28

30

32

34

36

38

40

42

44

Figure 1: Nu against the number of grid points for different geometries: (a) Periodic domain (b) Cubic domain (c) Cylindrical domain. Markers: ×
AFID, � Goldfish, � Nek5000, ◦ OpenFOAM. Lines: - Nuvol, − − − Nupl, − · − Nukin, · · · Nuth.

degrees of freedom (which for simplicity we also call
grid points) is kept similar for all codes. The mesh
refinement is undertaken near the plates. The bound-
ary layer thicknesses are estimated a priori using the
scaling theory by Grossmann and Lohse (GL theory)
[5, 11, 27, 28]. In the studied case of Pr = 1, the thick-
nesses of the kinetic and thermal boundary layers are
similar. At any considered level of grid refinement, the
total number of grid points, N, and the number of grid
points inside the boundary layers, NBL, of the chosen
meshes are similar for all codes. The spatial resolutions
and the corresponding values of N and NBL are listed in
the Appendix.

The Nu numbers are averaged over 300 dimension-
less time units after the solution approaches a statisti-
cally stationary state, which takes about 200 time units,
depending on the initial conditions. Nu, obtained at dif-
ferent levels of grid refinement, versus the number of
grid points, is presented in Fig. 1. We observe that at
high grid resolutions all codes converge to the same re-
sult within a small time averaging error of about 0.5%.
Different ways to calculate Nu and different codes lead
to different convergence of the obtained Nu with in-
creasing grid resolution. For example, the results for
Nek5000 at very coarse resolutions are quite inaccu-
rate, but they converge quickly to the final value when
the resolution is increased. We can interpret the results
in Fig. 1 as a good indication of convergence to nearly
grid independent results, achieved by all codes, albeit at
different spatial resolutions. Ultimate convergence as-
sessment is hampered by the degree of time averaging
uncertainty that remains, we come back to this momen-
tarily.

For a fixed statistical averaging interval, the costs
are proportional to the mesh size, both in space and
time. For this cost-estimate to hold, it is required
that the iterative solvers converge in a number of steps

Table 1: Nu obtained with the highest spatial resolutions for the peri-
odic domain, where Nx × Ny × Nz = 384 × 384 × 384 for AFID and
Nx × Ny × Nz = 379 × 379 × 379 for Nek5000.

Nulo Nuup Nuvol

AFID 32.24 32.27 32.18
Nek5000 32.29 32.41 32.54

Average 32.32 ± 0.24 (0.73%)

Table 2: Nu obtained with the highest spatial resolutions for the cubic
container, where Nx × Ny × Nz = 384 × 384 × 384 for Goldfish and
Nx × Ny × Nz = 379 × 379 × 379 for Nek5000.

Nulo Nuup Nuvol

Goldfish 31.56 31.49 31.47
Nek5000 31.53 31.58 31.53

Average 31.53 ± 0.08 (0.24%)

Table 3: Nu obtained with the highest spatial resolutions for the
cylindrical container, where Nr × Nφ × Nz = 192 × 512 × 384
for RBflow/Goldfish, Nxy × Nz = 85009 × 384 for Nek5000, and
Nxy × Nz = 110592 × 384 for OpenFOAM.

Nulo Nuup Nuvol

RBflow 32.08 32.15 32.24
Goldfish 32.19 32.31 32.33
Nek5000 32.26 32.23 32.16

OpenFOAM 32.16 32.10 32.13

Average 32.20 ± 0.14 (0.44%)

that is approximately constant during the time-interval
over which the statistical averaging is performed. With
suitable preconditioners such can be realized, as was
observed for the corresponding codes. The Courant-
Friedrichs-Lewy (CFL) condition and the numerical sta-
bility of the simulations were the two restrictions on the
time stepping that were taken into account in all con-
ducted simulations. As one can see in Fig. 2, the com-
putational costs scale from O(N4/3) to O(N5/3) in all
cases, in a full accordance to the von Neumann stabil-
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ity of the schemes used in the corresponding codes. For
the schemes, which are optimal with respect to the von
Neumann stability, the time step size τ is taken propor-
tional to the mesh width h, which in turn is proportional
to N−1/3. This leads to the scaling of the computational
costs with the mesh size as O(N4/3). Apart from the von
Neumann stability, there exists also another restriction
on the time stepping in accurate DNS, which is the res-
olution of the Kolmogorov time micro-scales; we will
come back to this issue in section 5.

Further, in Fig. 2, we observe that the general pur-
pose codes designed for unstructured grids in complex
geometries are more expensive than those for structured
grids, exploiting the periodic directions of the geome-
try or, at least the possibility to separate variables due
to the regularity of the grids. For example, AFID and
OpenFOAM are both second-order accurate, but Open-
FOAM is much closer to Nek5000 in terms of computa-
tional cost. Apart from the grid organization, the order
of the schemes, used in the codes, influences the com-
putational load. Obviously, the higher-order schemes
need more operations per time step than the lower-order
schemes. Also the way to solve the Poisson equation
for the pressure-like function determines the efficiency.
In general purpose codes only iterative computation-
ally intensive solvers can be employed, while special-
ized codes can use direct solvers, which are much more
efficient. Also the parallel scalability of the codes in-
fluences the total computational costs. OpenFOAM, for
example, is characterized by quite modest scalability,
compared to the other considered codes [29, 30]. In
our simulations with OpenFOAM, we used a sufficiently
low number of cores, such that we operate only in the
range of good parallel efficiency. In that case, the mea-
surements of computational time are not affected signif-
icantly by possible effects of non-ideal scalability.

The Nu values obtained in the highest resolution sim-
ulations are listed in Tables 1, 2, and 3, for the periodic
domain, cube, and cylinder, respectively. These data can
be used to further quantify the error in Nu versus com-
putational costs. To arrive at this we undertake a num-
ber of steps. First, we calculate the average Nu as ref-
erence points. We calculate the standard deviation from
the data given in the tables and use twice the standard
deviation as a 95% confidence interval for the average
values. These average Nu are subsequently used as a
reference value to calculate the error in Nulo, Nuup, and
Nuvol separately for the different codes and grids. After
that, we take the average of those individual errors, and
show the average error against the computational cost in
Fig. 3. The error decreases with increasing cost, until it
becomes comparable to the confidence bounds. At that

point, the error is dominated by the time averaging error,
and no longer due to the spatial discretization. Since the
computational costs for simulations of 300 dimension-
less time units are already considerably large we did not
pursue a further reduction in the time averaging error. In
fact, such time averaging error will tend to zero at a rate
inversely proportional to the square root of the simula-
tion time. Hence, only at extreme costs one could per-
ceive a significant reduction of the time averaging error.
Such resources are not available for this study and are
also not required to establish the main conclusions.

In the periodic domain, AFID was found to be much
faster than Nek5000. At a given computational cost, a
much higher number of grid points can be afforded with
AFID. On the other hand, this significant difference in
computational cost between Nek5000 and AFID when
counting the number of grid points only, is consider-
ably reduced when counting the actually achieved level
of precision of the Nu prediction. Clearly, the higher-
order method used in Nek5000 is beneficial at reducing
the gap with AFID in error versus cost considerations.
This is illustrated concisely in Fig. 3. For the cubic
container we observe a similar situation: the special-
ized code Goldfish is much faster than Nek5000, see
Fig. 2b. And again, the efficiency of Nek5000 becomes
closer to that by Goldfish when the convergence of Nu
is taken into account. When the error of the Nu calcu-
lation is above the confidence bound, Goldfish calcu-
lates Nu up to tenfold more accurately than Nek5000,
for given computational costs. In the cylindrical con-
tainer, RBflow and Goldfish are up to a factor ten faster
than OpenFOAM for a given level of accuracy, while
RBflow and OpenFOAM are both of second order. This
illustrates the penalty that comes with the use of a gen-
eral purpose code compared to a dedicated specialized
code. Nek5000 falls roughly in between RBflow and
OpenFOAM. Overall, Fig. 3 shows that the large differ-
ences in speed that appear in Fig. 2 (with AFID/RBflow
the most efficient when it comes to costs of simulation
with a certain number of grid points) decrease when
counting the error in Nu versus computational costs due
to the usage of higher-order schemes in the other codes.

In Fig. 3 one can also see that the accuracy of the
general purpose codes behave non-monotonically with
increasing computational time. The strong oscillations
in the behavior of the Nu-error versus the costs are
explained not only by the restricted time of statisti-
cal averaging, but mainly by the usage of the iterative
solvers within these codes. While the dedicated codes
AFID/RBflow and Goldfish use direct solvers and get
the corresponding solutions at the machine accuracy, the
iterative solvers of the general purpose codes stop itera-
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Figure 2: Computational cost against the number of grid points for different geometries: (a) Periodic domain (b) Cubic domain (c) Cylindrical
domain. × AFID/RBflow, �, Goldfish, � Nek5000, ◦ OpenFOAM, − − − O(N4/3) and · · · O(N5/3).

tions with a certain residual error. Furthermore, the used
iterative solvers generally do not guarantee a monotonic
reduction of the errors with increasing number of con-
ducted iterations. This holds in particular for the gener-
alized minimal residual method used in Nek5000. This
makes prediction of the accuracy versus computation
costs for general purpose codes less trivial and some-
what uncertain.

4.2. Robustness against under-resolution

At Ra = 108, we are able to compute an accurate refer-
ence solution that is converged with respect to the spa-
tial resolution independent of which code was adopted,
(see Fig. 1). At higher Ra numbers, the computation
of such a reference solution for all codes becomes too
expensive, however. As an alternative, we can com-
pare the codes in a different, somewhat more qualita-
tive, way by increasing the Ra number while keeping
the spatial resolution fixed. In this case, we use the
meshes with the highest resolution adopted for Ra = 108

in the cylindrical container. As Ra increases, the ef-
fect of insufficient resolution will unavoidably show up
sooner or later, which indicates the robustness of the
codes, against under-resolution. Nu, compensated with
Ra−1/3, is plotted against Ra in Fig. 4. Initially, the re-
sults of the three codes at Ra = 108 are all very close
to each other with the differences between the results
less than 0.5%. The values of Nu are also very close
to the prediction by the GL theory with the deviations
between the simulation results and the GL predictions
less than 1%. As Ra increases the different robustnesses
of the various codes against deliberate under-resolution
become apparent. Nek5000 shows the smallest devi-
ation from the theoretical scaling of Nu, and RBflow
the largest. However, we emphasize that this robust-
ness of Nu for Nek5000 against deliberate underresolu-
tion does not imply that other flow features would still

be well represented. E.g., in Fig. 5 we show tempera-
ture snapshots for well resolved and deliberately under-
resolved simulations with Nek5000. The latter clearly
show a pronounced imprint of the computational grid at
Ra = 1010 even though the Nu number predictions are
not affected much. Nek5000 does not show the imprint
of the mesh at Ra = 109, but the effect of underresolu-
tion can be seen in very subtle ripples near high gradi-
ents. Similar plots obtained from RBflow also show an
inadequacy of the grid resolution at Ra = 109. Under-
resolution appears to affect Nek5000 predictions some-
what less than is seen for RBflow.

This comparison clearly indicates that the agreement
of Nu with the theoretical prediction (and among the
values obtained from the various definitions) is not
enough to assess the adequacy of the spatial resolution
of the numerical simulation. Additional quantities have
to be analyzed, such as the instantaneous temperature
snapshots or rms profiles, in order to clarify this issue.

5. Conclusions and outlook

In this paper, we have compared several codes for the
simulation of turbulent RB convection in a number of
typical geometries. Particular attention has been given
to the heat transport in the turbulent flow, which is quan-
tified by Nu. The computational efficiency of the codes
is determined with reference to fully converged simula-
tions at relatively high spatial resolutions. We observed
significant differences between the codes in terms of
computational costs, i.e. the specialized AFID/RBflow
and Goldfish code clearly outperform Nek5000 and
OpenFOAM. Thus, we note that a considerable saving
in computational costs can be achieved by employing an
optimized code for a simple geometry compared to gen-
eral purpose codes designed for complex geometries.
The benefit of general purpose codes like Nek5000 and
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Figure 3: Average error of Nu against the computational cost for different geometries: (a) Periodic domain (b) Cubic domain (c) Cylindrical
domain. × AFID/RBflow, � Goldfish, � Nek5000, ◦ OpenFOAM. The dashed line indicates the 95% confidence level of the reference value given
in Tables 1, 2, and 3.
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Figure 4: Nu versus Ra in cylindrical container of Γ = 1. These results
of deliberately under-resolved DNS are obtained at a fixed computa-
tional mesh, which is too coarse for large Ra. + Nuvol (RBflow),
◦ Nupl (RBflow), ∗ Nuvol (Goldfish), � Nupl (Goldfish), × Nuvol
(Nek5000), � Nupl (Nek5000), − − − Grossmann-Lohse theory [28].
Note that a correct Nu does not imply a well-resolved flow, see Fig. 5

OpenFOAM is of course that they are much wider appli-
cable than specialized codes, which need to be specifi-
cally tuned per case.

The usage of unstructured grids in the general pur-
pose codes requires iterative solutions of the govern-
ing equations on each time step. This leads to higher
computational costs and makes these codes less pre-
dictable with respect to the accuracy of the calcula-
tion of Nu with growing computational costs. Also the
scalability of the OpenFOAM codes on supercomputers
leaves much to be desired. All this leads to the fact that
AFID/RBflow, being also the second-order as Open-
FOAM in the considered configuration, is at least ten
times faster than OpenFOAM, while providing the same
level of accuracy. Therefore we conclude that Open-
FOAM, at least in the analyzed configuration, which is
the most popular in engineering, is not optimal for sci-
entific investigations of high Ra number thermal con-

vection.
Also, among the other codes, AFID/RBflow is

clearly the fastest one. It is up to tenfold faster than
Goldfish and up to hundredfold faster than Nek5000.
However, when the accuracy of the Nu calculation
is taken into account, the efficiency of Goldfish and
AFID/RBFlow is similar, while Nek5000 and Open-
FOAM are up to 10 times slower. When in a certain
numerical study the point of interest is an integral quan-
tity (zero moment), like Nu or Reynolds number, or
when the profiles of the mean temperature or velocity
are aimed to be studied (first moments), the advantages
of the usage of the second-order code AFID/RBflow
are clearly pronounced. It is extremely fast and cal-
culates these quantities precisely on sufficiently fine
meshes. This is partly thanks to the implementation of
AFID/RBflow, which is highly optimized, and scales
excellently on large number of cores [31].

Finally, we give a general estimate of the complexity
of the DNS of turbulent RB convection in the classical
regime and in the ultimate regime, which is to be stud-
ied in the future. As we already mentioned in section
4.1, apart from the CFL-condition and the von Neu-
mann stability, there exists also another restriction on
the time stepping in accurate DNS, which is the reso-
lution of the Kolmogorov time microscales. Note that
the Kolmogorov microscale in space, η ≡ (µ3/〈ε〉V )1/4,
and the microscale in time, ητ ≡ (µ/〈ε〉V )1/2, are re-
lated as µ ητ ∼ η2 with µ ≡

√
Pr /Ra. Thus, the optimal

(not over-resolved but accurate) DNS, which resolve
both, the Kolmogorov time microscale ητ and the Kol-
mogorov spatial microscales η, will lead to the scaling
of the computational costs with the grid size N at least
as O(µN5/3). Since 〈ε〉V = (Nu − 1)/

√
PrRa, for a fixed

Pr, the computational costs in accurate DNS must grow
at least as O(Nu5/4 Ra3/4). Therefore, in the classical
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Figure 5: Temperature field at z/H = 0.0152 from the Nek5000 code (top row) and RBflow (bottom row) at (from left to right) Ra = 108, Ra = 109

and Ra = 1010. For the latter two Ra values the chosen grid resolution is insufficient. Note that in the Nek5000 snapshots the imprint of the
computational grid is clearly visible in the higher Ra number cases, even though the Nu number from the simulations looks reasonable, see Fig. 4.
The ripples in the RBflow snapshots are observed near sharp gradients when the resolution is insufficient.

regime, where Nu ∼ Ra1/3, the cost will increase with
Ra at least as O(Ra7/6), while for the ultimate regime,
where the scaling Nu ∼ Ra1/2 is expected, the antici-
pated computational costs in accurate DNS are at least
O(Ra11/8).

Before concluding this paper we wish to point once
more out that comparing Nu obtained by the numer-
ical simulation with the expected value is not a reli-
able criterion to assess its validity. In fact, we showed
that deliberately under-resolved simulations performed
with higher order codes show a small error in Nu while
producing temperature fields with strong unphysical os-
cillations. Instantaneous snapshots of temperature and
profiles of higher order moments have to be evaluated,
together with Nu, in order to establish the quality of a
numerical simulation.
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Appendix: Spatial resolution and Nusselt number at Ra = 108 and Γ = 1.

Table 4: Spatial resolution and Nu numbers for AFID in the periodic domain.

N NBL Nulo Nuup Nuvol Nukin Nuth

643 3 37.02 37.00 37.06 36.94 37.24
963 4 33.73 33.81 33.74 33.32 33.80

1283 5 33.11 33.12 33.27 32.76 33.12
1923 8 32.57 32.62 32.76 32.24 32.60
2563 11 32.57 32.62 32.75 32.69 32.59
3843 16 32.24 32.27 32.18 32.10 32.25

Table 5: Spatial resolution and Nu numbers for Nek5000 in the periodic domain.

E N NBL Nulo Nuup Nuvol Nukin Nuth

53 363 2 43.78 43.63 33.47 28.01 32.25
73 503 2 36.47 36.48 32.86 29.72 31.29
93 643 3 32.01 32.04 32.27 30.70 31.33

143 993 4 31.57 31.53 32.22 31.83 31.95
183 1273 5 32.30 32.22 32.39 32.19 32.23
273 1903 8 32.41 32.46 32.41 32.38 32.41
363 2533 11 32.31 32.43 32.45 32.35 32.38
543 3793 16 32.29 32.41 32.54 32.35 32.37

Table 6: Spatial resolution and Nu numbers for Goldfish in the cubic container.

N NBL Nulo Nuup Nuvol Nukin Nuth

643 3 34.93 34.99 34.91 30.13 31.47
963 4 32.38 32.36 32.34 29.88 30.46

1283 5 31.56 31.70 31.66 30.16 30.44
1923 8 31.67 31.51 31.58 30.89 31.01
2563 11 31.65 31.63 31.64 31.24 31.28
3843 16 31.56 31.49 31.47 31.31 31.36

Table 7: Spatial resolution and Nu numbers for Nek5000 in the cubic container.

E N NBL Nulo Nuup Nuvol Nukin Nuth

53 363 2 43.44 43.38 33.29 29.58 32.86
73 503 2 36.13 36.28 32.47 30.55 31.48
93 643 3 31.76 31.88 31.83 30.77 31.12

143 993 4 30.93 30.93 31.55 31.36 31.38
183 1273 5 31.53 31.64 31.68 31.56 31.62
273 1903 8 31.40 31.41 31.37 31.36 31.38
363 2533 11 31.56 31.71 31.60 31.62 31.63
543 3793 16 31.53 31.58 31.53 31.52 31.55
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Table 8: Spatial resolution and Nu numbers for RBflow in the cylindrical container.

Nr Nφ Nz NBL Nulo Nuup Nuvol

48 128 96 4 34.95 34.86 34.85
96 256 192 8 32.59 32.76 32.58

192 512 384 16 32.08 32.15 32.24

Table 9: Spatial resolution and Nu numbers for Goldfish in the cylindrical container.

Nr Nφ Nz NBL Nulo Nuup Nuvol

48 128 96 4 33.20 33.02 33.18
96 256 192 8 32.40 32.19 32.26

192 512 384 16 32.19 32.31 32.33

Table 10: Spatial resolution and Nu numbers for Nek5000 in the cylindrical container. Exy denotes the number of spectral elements in a horizontal
cross section, and Ez in the vertical direction.

Exy Ez Nxy Nz NBL Nulo Nuup Nuvol

48 5 2409 36 2 41.78 41.85 33.10
48 7 2409 50 2 36.91 36.62 32.87
48 9 2409 64 3 32.68 33.06 32.52

108 14 5377 99 4 31.47 31.41 32.29
192 18 9521 127 5 32.07 32.12 32.24
432 27 36100 190 8 32.14 32.18 32.16
768 36 64009 253 11 32.11 32.08 32.03

1728 54 85009 379 16 32.26 32.23 32.16

Table 11: Spatial resolution and Nu numbers for OpenFOAM in the cylindrical container.

Nxy Nz NBL Nulo Nuup Nuvol

3072 64 3 35.43 35.30 37.10
6912 96 4 33.33 33.27 34.00

12288 128 5 32.62 32.52 32.78
27648 192 8 32.17 32.09 32.21
49152 256 11 31.90 32.10 32.00

110592 384 16 32.16 32.10 32.13
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