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Abstract

We report results from Direct Numerical Simulation (DNS) of rotating Rayleigh-Bénard convection, regard-
ing the scaling of heat transfer with the Rayleigh number for rotating systems at a fixed rate of rotation.
The Prandtl number, Pr = 6.4, is kept constant. We perform simulations, using a spectral element method,
for Rayleigh numbers Ra from 106 to 109, and Rossby numbers Ro from 0.09 to ∞. We find that the Nusselt
number Nu scales approximately with a power 2/7 of Ra at sufficiently high Ra for all Ro. The value of
Ra beyond which this Nusselt scaling is well established increases with decreasing Ro. Depending on the
rotation rate, the Nusselt number can increase up to 18% with respect to the non-rotating case.
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1. Introduction

Convective heat transfer plays a major role in
a wide range of physical phenomena and engineer-
ing applications. Rayleigh-Bénard convection is a
classic example of convective heat transfer, stimu-
lated by its accessibility to numerical and experi-
mental analysis. In this particular problem, a layer
of fluid is heated from below and cooled from above.
The thermal expansion of the fluid creates a buoy-
ant force that leads to the convection of heat. We
use Direct Numerical Simulation (DNS) to investi-
gate the dependence of the heat transfer efficiency
in case the system is in a state of steady rotation.
For the non-rotating case the heat transfer, as

characterised by the Nusselt number Nu, is pre-
dicted to scale with the Rayleigh number Ra as Raβ

in the limit of sufficiently high Ra (Grossmann and
Lohse (2000)). In this paper we present results of an
extensive parameter study indicating that asymp-
totically at high Ra, this scaling of the Nusselt num-
ber also accurately describes the rotating case. Ro-
tation is shown to introduce considerable variation
in the flow structuring (Kunnen et al. (2006)). Nev-
ertheless, the simulation results indicate that the
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scaling exponent β is quite independent of the ro-
tation rate. The main effect of rotation appears
through its influence on the value of Ra beyond
which the Nusselt number scaling is well expressed.

Rotating Rayleigh-Bénard convection serves as a
primary model for understanding the mechanisms
of geo- and astrophysical flows. For example, con-
vection inside the core of stars and planets, like the
Earth, is believed to generate magnetic fields by a
dynamo action (King et al. (2010)). Another ex-
ample of convection is found in the Earth’s atmo-
sphere (Hartmann et al. (2001)), and in the core of
the Sun (Miesch (2005)). The efficiency with which
heat is transported, measured by the Nusselt num-
ber, plays an important role in these natural flow
phenomena.

Geo- and astrophysical flows are accompanied by
the natural rotation of the respective star or planet.
Experiments by, e.g., Liu and Ecke (2009), and
Niemela et al. (2010), show that the heat transfer
can be affected by rotation. Both physical experi-
ments and numerical simulations are limited in the
range of flow scales that can be reproduced. Typ-
ically, the interest is in investigating the relevance
of scaling laws to extrapolate the Nusselt number
to Rayleigh numbers of practical interest. Here, we
focus in particular on the effect of rotation on these
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scaling laws, also to provide reference material for a
possible extension to rotating systems of the theory
put forward in Grossmann and Lohse (2000) for the
non-rotating case.
There are various studies of the Nusselt number

as function of the rotation rate, i.e., the inverse
Rossby number (Horn and Shishkina, 2014; Kun-
nen et al., 2008, 2011; Stevens et al., 2009; Zhong
et al., 2009). We can roughly distinguish three
regimes with respect to the Rossby number. In
the weak-rotation regime (Ro & 2.5), the flow is
dominated by a large-scale circulation. The Nus-
selt number does not increase with respect to the
non-rotating case. In the moderate-rotation regime
(0.15 . Ro . 2.5), the large-scale circulation
breaks down due to rotation, and the flow organizes
itself in vertically aligned vortices. The Nusselt
number increases with the rotation rate. Finally
in the strong-rotation regime (Ro . 0.15), rotation
dominates the flow structure and suppresses heat
transport in the vertical direction. The Nusselt
number rapidly decreases with the rotation rate.
In this numerical study, we consider Rayleigh-

Bénard convection in a rotating vertical cylinder
with a width-to-height aspect ratio Γ = D/L = 1.
The goal is to study the influence of the tempera-
ture difference between top and bottom walls (char-
acterised by the Rayleigh number) and the rotation
rate (characterised by the Rossby number) on the
structure of the flow and the heat transfer. We
perform direct numerical simulations for a wide
range of Rossby and Rayleigh numbers to inves-
tigate the dependence of the Nusselt number. The
direct numerical simulations are performed with a
spectral element method, implemented in the open-
source code Nek5000, originally developed by Fis-
cher (1997). The purpose of this work is essentially
twofold. On the one hand, we assess the perfor-
mance of the spectral-element method in direct nu-
merical simulations of Rayleigh-Bénard convection.
On the other hand, we seek a deeper understand-
ing of the effect of rotation on the transition from
an unsteady laminar flow to a developed turbulent
flow when increasing the Rayleigh number.
The organization of this paper is as follows. We

first discuss, in Section 2, the governing equations
for Rayleigh-Bénard convection including rotation.
In Section 3, we briefly describe the spectral ele-
ment method used for DNS and justify the spa-
tial resolution we used. Numerical findings are pre-
sented in Section 4 in which we establish the de-
pendence of the heat transfer on the Rayleigh and

Rossby number. We show that the Nusselt num-
ber asymptotically maintains strong scaling with
the Rayleigh number also in case of rotation, and
that rotation and the temperature difference qual-
itatively change the flow. Concluding remarks are
collected in Section 5.

2. Boussinesq approximation of rotating
Rayleigh-Bénard convection

This section describes the equations of motion,
regarding Rayleigh-Bénard convection in a rotating
cylinder and the evaluation of the Nusselt number
from the simulation data.

2.1. Rotating coordinate system

The effect of rotation is taken into account by
adopting a co-rotating coordinate system and re-
casting Newton’s laws into this non-inertial coordi-
nate system. The adoption of such a coordinate sys-
tem introduces additional (fictitious) body forces.
We derive the effects of rotation on the evolution of
the flow and start from the Navier-Stokes equation
in the inertial coordinate system,

ρ(∂t + v · ∇)v = −∇p+ µ∇2v + ρg. (1)

Here, ρ is the density, v the velocity, p the pressure,
µ the molecular viscosity and g the gravitational ac-
celeration. Following the approach by Kundu and
Cohen (2010), we make use of the kinematic rela-
tion,

v = u+Ω× r. (2)

Here, u and r are the velocity and position vec-
tor in the co-rotating coordinate system, and Ω is
the rotation vector. Substituting relation (2) into
the Navier-Stokes equation (1) yields after a little
manipulation,

ρ(∂t + u · ∇)u =−∇p+ µ∇2u+ ρg

− 2ρΩ× u

− ρΩ× (Ω× r). (3)

The rotation of the non-inertial coordinate sys-
tem introduces two fictitious (or d’Alembert) forces,
which are the Coriolis force (2ρΩ×u) and the cen-
trifugal force (ρΩ× (Ω× r)).

In our study, we consider Rayleigh-Bénard in a
cylinder rotating about its vertical axis, as illus-
trated in Fig. 1. The coordinate system rotates
along with the cylinder and the rotation vector is
Ω = (0, 0,Ω)T , where Ω is simply the rate of rota-
tion.

2



x y

z

Ω

T0 +∆T

T0

L

D

g

Figure 1: Geometry of the rotating cylinder.

2.2. Boussinesq approximation

Rayleigh-Bénard convection is driven by a tem-
perature difference between the “warm” and “cold”
plate. The thermal expansion of the fluid gener-
ates buoyancy that sets the fluid in motion. This
effect of compressibility can be simplified by the
Boussinesq approximation. In essence, the fluid is
regarded to be incompressible and only the leading-
order effects of compressibility are taken into ac-
count. A comprehensive description of the Boussi-
nesq approximation is given by Landau and Lifshitz
(1987). To start with, we consider a density vari-
ation ρ′ from a reference density ρ0, ρ = ρ0 + ρ′.
The variation in density is assumed to be small in
the sense that ρ′/ρ0 � 1. Typically, we need an
equation of state to close the governing equations.
Here, the equation of state is approximated by,

ρ = ρ0 [1− β(T − T0)] , (4)

where β is the thermal expansion coefficient and T0

a reference temperature, taken equal to the temper-
ature of the upper plate. This linearisation is only
accurate for small fluctuations in temperature, rel-
ative to the reference temperature. By substituting
(4) into the Navier-Stokes equation (3) and collect-
ing terms of similar magnitude, we find,

ρ0(∂t + u · ∇)u =−∇q + µ∇2u− ρ0β(T − T0)g

− 2ρ0 Ω× u

+ρ0β(T − T0)Ω× (Ω× r). (5)

Here, we define an effective pressure q = p+ ρ0φ−
ρ0|Ω × r|2/2, where φ is a scalar field related to

gravity g = −∇φ. The concise notation q is possi-
ble since the hydrostatic components of the gravi-
tational and centrifugal force can written as a gra-
dient. Additionally, we have the energy and conti-
nuity equation,

ρCp(∂t + u · ∇)T = k∇2T, (6)

∇ · u = 0. (7)

Here, Cp is the specific heat coefficient at constant
pressure, and k the thermal conductivity. The gov-
erning equations are complemented by the bound-
ary conditions listed in Table 1. A no-slip condition
is imposed at the wall and the side-wall of the cylin-
der is assumed to be perfectly insulated, while at
the top and bottom walls the temperature is pre-
scribed.

The Boussinesq approximation was first discov-
ered by Oberbeck (1879), but is generally at-
tributed to Boussinesq (1903). The Boussinesq ap-
proximation is a common practice motivated by
cases with relatively small temperature differences
of a few degrees Kelvin between the top and bot-
tom walls. The exact validity of this approxima-
tion is examined in close detail by, e.g., Gray and
Giorgini (1976). One of the necessary assump-
tions is that fluid properties, µ, k, and β, are inde-
pendent of temperature. The additional effects of
temperature-dependent viscosity and thermal dif-
fusivity are for example studied by Ahlers et al.
(2006).

Table 1: Boundary conditions

Bottom plate u = 0 T = T0 +∆T

Top plate u = 0 T = T0

Side-wall u = 0 ∂T
∂n = 0

2.3. Dimensionless formulation

Following earlier work by Kunnen et al. (2010)
for example, we use the height of the cylinder L
as the reference length and the free-fall velocity
U =

√
gβ∆TL as the reference velocity. Using

these typical scales, the governing equations take
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the dimensionless form,

(∂t + u · ∇)u =−∇q + (Pr/Ra)1/2∇2u+ Tez

− (1/Ro)ez × u

+ FrT ez × (ez × r), (8a)

(∂t + u · ∇)T =(PrRa)−1/2∇2T, (8b)

∇ · u =0. (8c)

Here, we have used g = −ez, Ω = ez, and the unit
vector ez = (0, 0, 1)T . The equations are solved
numerically in the dimensionless formulation, to-
gether with the dimensionless boundary conditions
listed in Table 2. In the remaining sections, we
implicitly assume that quantities are dimensionless
unless stated otherwise.
We can identify four dimensionless numbers that

characterize rotating Rayleigh-Bénard convection,

Ra = gβ∆TL3/(νκ), (9)

Pr = ν/κ, (10)

Ro = U/(2ΩL), (11)

Fr = Ω2L/g, (12)

which are the Rayleigh, Prandtl, Rossby and
Froude number respectively. In the present study,
we assume that Fr � 1 and the temperature-
dependent component of the centrifugal force can
be neglected. A study by Zhong et al. (2009) shows
this assumption is valid for a range of realistic con-
figurations. In the experimental study by Kunnen
et al. (2010), we find Fr < 0.04 for example.

Table 2: Dimensionless boundary conditions

Bottom plate u = 0 T = 1

Top plate u = 0 T = 0

Side-wall u = 0 ∂T
∂n = 0

The dynamics of rotating Rayleigh-Bénard con-
vection is characterized by the combination of the
said dimensionless parameters. A critical Rayleigh
number Rac indicates the onset of convection
(Hébert et al., 2010), beyond which the hydrostatic
equilibrium is no longer stable. Higher Rayleigh
numbers lead eventually to a regime from “soft” to
“hard” turbulence (Julien et al., 1996a).
In combination with the buoyancy effects driv-

ing Rayleigh-Bénard convection, rotation can have
a signficant influence on the overall flow structuring
(Kunnen et al., 2006). Early experimental research

by Rossby (1969) shows that rotation could increase
the heat transfer with respect to the non-rotating
case. This increase in heat transfer is associated
with a qualitative change in the structure of the
flow. A relevant parameter is Rossby number: the
ratio of the inertial to the Coriolis force. At high
Rossby numbers, i.e., very slow rotation, the effect
of rotation is limited and the flow is dominated by a
large-scale circulation (LSC) (Kunnen et al., 2008).
For sufficiently low Rossby numbers, the Coriolis
force becomes dominant and is capable of breaking
up the LSC. In that case, local vortical structures
occur, penetrating well into the domain from both
the top and the bottom walls. These structures are
characteristic of conditions that display a strongly
increased transport of heat due to Ekman pumping
(Ekman, 1905).

In this paper we consider a system composed of
water and take Pr = 6.4 throughout. The Rayleigh
number is varied ranging from 106 to 109, while
the Rossby number is varied from ∞ for the non-
rotating case to values as low as ≈ 0.1.

2.4. Global heat transfer

The purpose of the direct numerical simulations
is to measure the global heat transfer by the flow.
The Nusselt number, which is the ratio between
the total and the conductive heat flux, provides the
following expression of the local heat transfer (here
taken in the vertical direction),

Nu = (PrRa)1/2 uzT − ∂zT. (13)

The global heat transfer is measured, either by av-
eraging over the walls of the cylinder or the entire
volume. The wall- and volume-averaged Nusselt
numbers are as follows,

〈Nu〉W = 〈∂zT 〉W (14)

〈Nu〉V = 1 + (PrRa)1/2 〈uzT 〉V (15)

where 〈.〉W and 〈.〉V denotes the average over the
walls and the volume, respectively. Here, we have
already simplified the averages with the boundary
conditions given in Table 2, following a similar ap-
proach by Kerr (1996). Both averages should agree
if the averaging time and the spatial resolution are
sufficient. Naturally, the Nusselt number of the
bulk is sensitive to the resolution in the bulk, and
the Nusselt number of the wall to the resolution
in the near-wall regions. This provides an extra, a
posteriori, check on the spatial resolution used in
the numerical simulations.
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3. Spectral element method

The governing equations, given by Eq. (8),
are solved numerically with the spectral element
method (SEM), that is implemented in the open-
source code Nek5000 (Fischer, 1997). The spectral
element method is essentially a variation of the fi-
nite element method using higher-order piecewise
polynomials as basis functions. Deville et al. (2004)
describe in more detail the spectral element method
and its application to fluid dynamics.
The basis functions of the velocity are local

tensor-product Lagrange interpolants of order p on
Gauss-Lobatto-Legendre nodes, whereas the basis
functions of the pressure are Lagrange interpolants
of order p − 2 on Gauss-Legendre nodes. The to-
tal number of grid points is then (p + 1)3 (for the
velocity) per three-dimensional element.
For time-integration, a semi-implicit third-order

BDF3/EXT3 scheme is used (Karniadakis et al.,
1991). The viscous term is intregrated with a third-
order backward differencing scheme (BDF3), and
the nonlinear convective term with a third-order
extrapolation scheme (EXT3). In general, we use
adaptive time-stepping with a target CFL number
of 0.5, which is in practice more than sufficient to
guarantee the stability during the simulation. A
CFL number of . 1 is usually advocated (Deville
et al., 2004).
In turbulent flows at high Rayleigh numbers the

physics is dominated by convection, as opposed to
diffusion in laminar flows. Rønquist (1996) shows
that skew-symmetry of the convective operator is
crucial for the stability of the numerical scheme.
Malm et al. (2013) demonstrate that the skew-
symmetry of the convective operator can be re-
spected by over-integration, which means apply-
ing quadrature rules with orders higher than N .
Quadrature rules of order 3N/2, instead of N ,
are in practice sufficient to approximate the skew-
symmetry of the convective operator up to machine
precision. Over-integration is indispensable to sta-
bilizing the SEM in convection-dominated flows
and, consequently, is applied in the numerical sim-
ulations presented in this study.
In this numerical study, we use spectral elements

with polynomial order p = 5. We perform a con-
vergence test to determine the required number of
elements, i.e., spatial resolution, for accurate es-
timates of the Nusselt number. Here, the mesh
is characterized by the number of elements in the
z-direction, Ez, and in the xy-plane, Exy. We

Table 3: Number of spectral elements in z-direction, Ez ,
and in the xy-plane, Exy , with their respective average mesh
widths h̄z and h̄xy .

Mesh Ez h̄z Exy h̄xy

1 16 6.250 · 10−2 300 4.976 · 10−2

2 24 4.167 · 10−2 588 3.555 · 10−2

3 32 3.125 · 10−2 972 2.766 · 10−2

4 48 2.083 · 10−2 1728 2.078 · 10−2

performed several simulations for Ra = 108 and
Ra = 109 with the different resolutions given in
Table 3. To capture the sharp gradients in the
boundary layers, the meshes are refined in the near-
wall region. The grids used in this study vary from
about 106 degrees of freedom (Ez ×Exy × (p+1)3)
to ≈ 1.8 107.

The goal here is to find an appropriate resolu-
tion for the simulations presented in the remaining
sections. We assume that cases with the highest
rotation rate of Ro = 0.09 are the most demand-
ing cases in terms of spatial resolution. We run
several simulations for the two Rayleigh numbers,
Ra = 108 and Ra = 109. The simulations run for a
total of 300 time units, starting from a zero-velocity
field and a linear temperature profile (T = z) as ini-
tial conditions. The Nusselt number is only aver-
aged over the last 200 time units, in which the flow
has reached an approximately statistically station-
ary state. We estimate a 95% confidence bound by
taking uncorrelated samples from the available his-
tory and calculating the standard mean error. The
Nusselt numbers for different resolutions are given
in Table 4.

For Ra = 108, both Nusselt numbers, 〈Nu〉V and
〈Nu〉W , are seen to have converged with the second
and third mesh, and agree within their uncertainty
bounds. The results also suggest that a higher res-
olution is required in the case that Ra = 109. From
these results, the formal order of convergence can-
not be established given the statistical errors in
the time-averaged Nusselt number. The value of
〈Nu〉V appears to be more sensitive than 〈Nu〉W
to the number of elements used. The slow conver-
gence of 〈Nu〉V in comparison with 〈Nu〉W could be
explained by the relatively lower resolution in the
bulk, due to the significant mesh refinement near
the wall. Based on these results, we decide to use
the third resolution for Ra ≤ 108, and the fourth
for Ra = 109.
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Table 4: Convergence of the time-averaged Nusselt number
with increasing spatial resolution, in the case Ro = 0.09.

Ra Mesh 〈Nu〉W 〈Nu〉V
108 1 37.5± 0.4 40.2± 1.2
− 2 38.0± 0.5 38.1± 1.2
− 3 37.9± 0.6 38.2± 1.6

109 1 77.8± 0.7 108.5± 1.9
− 2 72.2± 0.8 88.7± 2.2
− 3 73.4± 1.0 80.9± 3.1
− 4 72.2± 0.9 73.8± 1.9

4. Heat transfer scaling and flow structure

In this section, we first analyze the scaling of the
Nusselt number with the Rayleigh number, under
influence of steady rotation in Subsection 4.1. We
show that the Nusselt number increases up to 15%
with respect to the non-rotating case, depending on
the rate of rotation. Subsequently, in 4.2 we illus-
trate the qualitative changes in the flow structure
as a result of changes in Ra and Ro.

4.1. Scaling of the heat transfer under rotation

In general, we are interested in scaling laws of the
form, Ra = αNuβ . A universal law that covers the
entire parameter space, does not exist, as the coeffi-
cients α and β depend on the dimensionless param-
eters themselves. Grossmann and Lohse (2000) pro-
pose a comprehensive theory of scaling laws that ac-
counts for different regimes in the (Ra,Pr) param-
eter space. The boundaries between these regimes
are not sharp, allowing for transitional scaling laws
to prevail. Experiments for low Prandtl numbers
by Castaing et al. (1989) show that the exponent
β = 2/7 holds in a large range of Rayleigh num-
bers (Ra > 4 · 107). The existence of a 2/7-regime
is theoretically supported by Shraiman and Siggia
(1990). Regarding rotating Rayleigh-Bénard con-
vection, the question arises: is there a scaling law,
Nu ∝ Raβ? If so, what is the scaling exponent β?
We run simulations for 300 time units, starting

with a zero-velocity field and a linear temperature
profile (T = z) as initial conditions. The Nusselt
number of the wall, 〈Nu〉W , and of the volume,
〈Nu〉V , are averaged over the last 200 time units,
in which the flow has reached a statistically sta-
tionary state. The time-averaged values of Nu are
given in Table 5, in which Ra varies from 106 to
107 and Ro from 0.09 to ∞. For each simulation,

Table 5: Time-averaged Nusselt numbers, including the 95%
confidence bounds, for Pr = 6.4, Γ = 1 and varying Ra and
Ro.

Ra Ro 〈Nu〉W 〈Nu〉V
106 0.09 5.7± 0.2 5.5± 0.2
106 ∞ 9.0± 0.1 9.0± 0.1

107 0.09 16.0± 0.3 16.1± 0.5
107 0.36 18.8± 0.1 18.8± 0.4
107 1.08 17.3± 0.1 17.4± 0.3
107 ∞ 16.4± 0.1 16.5± 0.2

108 0.09 37.9± 0.3 38.2± 0.8
108 ∞ 33.0± 0.1 33.2± 0.4

109 0.09 72.2± 0.5 73.8± 1.0
109 0.36 71.2± 0.2 72.2± 0.9
109 1.08 66.8± 0.2 67.0± 1.6
109 ∞ 64.5± 0.3 66.5± 1.8

the two Nusselt numbers agree within the 95% con-
fidence bounds. The convergence study presented
in Section 3, suggests that this is an indication of
numerical convergence with respect to the spatial
resolution of the simulations. Using these grids,
the main structures in the flow associated with heat
transfer, e.g., boundary layers near all vertical and
horizontal walls, appear well captured.

The convergence study in Section 3 also shows
that 〈Nu〉W converges faster than 〈Nu〉V , when in-
creasing the resolution. The time-average of 〈Nu〉W
has a smaller statistical error too. In the remain-
der of this paper, we evaluate Nu via 〈Nu〉W , as it
appears more robust, both numerically and statis-
tically, than 〈Nu〉V .

The scaling of the Nusselt number with the
Rayleigh number is illustrated by plotting the data
in a logarithmic scale in Fig. 2. We compare the
results to the theoretical scaling for non-rotating
Rayleigh-Bénard convection by Grossmann and
Lohse (2000), with the updated prefactors by
Stevens et al. (2013). The results for the non-
rotating case, Ro = ∞, agree closely with the
theoretical predictions. In addition, we observe
that the Grossmann-Lohse theory can be approx-
imated with a 2/7 power law in a certain range of
Rayleigh numbers. A least squares fit in the range
107 ≤ Ra ≤ 109, and Ro = ∞, produces the power
law Nu ≈ 0.15Ra0.29, which is close to the theo-
retical exponent of 2/7. This result is also in close
agreement with the scaling Nu = 0.145Ra0.294, ob-
served in direct numerical simulations by Bailon-
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Cuba et al. (2010). Those results were obtained
with a finite volume method, used by several groups
working in the field of Rayleigh-Bénard convection
(Verzicco and Orlandi, 1996; Verzicco and Camussi,
2003). In the lower range Ra . 107 the scaling ex-
ponent deviates slightly from 2/7. This range of
Rayleigh numbers is characterized by “soft” tur-
bulence, in which a 2/7 power law does not hold
(Castaing et al., 1989).
The scaling of Nu with Ra is shown in more de-

tail in Fig. 3. Here, we have compensated the Nus-
selt number by a presumed scaling exponent of 2/7.
The effect of rotation on the scaling of Nu is not
entirely straightforward. As for the non-rotating
case, a single power law seems to be inadequate
in describing the scaling of Nu in the entire range
of Rayleigh numbers. For Ra & 108, the scaling
appears to be similar to 2/7, for all Rossby num-
bers. The existence of a 2/7 power law in rotating
Rayleigh-Bénard convection was also observed in
other experiments and simulations (Julien et al.,
1996b; Liu and Ecke, 1997), independent of the
Rossby number. Our results do suggest a weak de-
pendence on the Rossby number. The scaling expo-
nent in the range 108 . Ra . 109 subtly decreases
with the inverse Rossby number. At Ro = 0.36
and Ro = 0.09 we observe scaling exponents that
are slightly below 2/7. Because of limited compu-
tational resources, we have not been able to ex-
plore the range Ra > 109 yet. For Ra . 107 we do
not observe a uniform scaling at all. At these low
Rayleigh numbers various effects of the relatively
high viscosity have to be taken into account.
In Fig. 4, the Nusselt number is plotted against

the inverse Rossby number. Here, the Nusselt
number is normalized by the value of the non-
rotating case (Ro = ∞) to illustrate the relative
increase. The results for Ra = 109 agree with the
DNS data by Kunnen et al. (2008), which are per-
formed for identical physical parameters (Ra = 109,
Pr = 6.4, and Γ = 1). We can also distinguish
the three regimes of rotation, described by Kun-
nen et al. (2011). In the weak-rotation regime, the
heat transport does not increase. In the moderate-
rotation regime, the Nusselt number increases with
the inverse Rossby number. In the strong-rotation
regime, the Nusselt number rapidly decreases. This
Rossby-number dependence is also observed in ex-
periments by Kunnen et al. (2011) and Zhong et al.
(2009).
We find a maximum increase of 18% at Ra =

107 and Ro = 0.18, and 15% at Ra = 109 and

106 107 108 109

101

101.5

Ra
N
u

Figure 2: Scaling of Nu with Ra. �: Ro = ∞, ◦: Ro = 1.08,
4: Ro = 0.36, ×: Ro = 0.09, dashed: 0.15Ra0.29 (least
squares fit 107 ≤ Ra ≤ 109), solid: GL theory with updated
prefactors (Stevens et al., 2013).
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Figure 3: Scaling of Nu with Ra, compensated by Ra2/7.
�: Ro = ∞, ◦: Ro = 1.08, 4: Ro = 0.36, ×: Ro = 0.09,
dashed: 0.15Ra0.29 (least squares fit 107 ≤ Ra ≤ 109), solid:
GL theory with updated prefactors (Stevens et al., 2013).
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Ro = 0.18. The increase of heat transfer can be
attributed to a phenomenon called Ekman trans-
port, first described by Ekman (1905). The rotation
creates vortices in the boundary layer, that essen-
tially “pump” fluid into the bulk. These vortices
provide a more efficient mechanism of transferring
heat compared to the pure non-rotating turbulent
flow. This is expressed by an increase in the Nusselt
number.

The results for Ra = 107 and Ra = 109 show
a comparable trend in the Nusselt number. For
Ra = 107 the Nusselt number shows initially a
stronger increase, but eventually a faster decrease
in the strong-rotation regime. The difference might
be explained by the fact that, with decreasing Ra,
the buoyancy becomes weaker with respect to the
Coriolis force. Our results imply that the effect
of rotation is more pronounced at lower Rayleigh
numbers. A similar observation is made by Weiss
and Ahlers (2011).
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Figure 4: The Nusselt number as function of the inverse
Rossby number. The Nusselt number is normalized by its
non-rotating value. ◦: Ra = 107, ×: Ra = 109, 4: DNS
for Ra = 109, Pr = 6.4 (Kunnen et al., 2008). The vertical
dashdotted line indicates the transition between the weak-
and moderate-rotation regime (Weiss and Ahlers, 2011), and
the vertical dotted line the transition between the moderate-
and strong-rotation regime (Kunnen et al., 2011).

4.2. Change in flow structure

To visualize the effect of the Rayleigh and Rossby
numbers on the three-dimensional flow, we compare

the velocity and temperature solutions in the non-
rotating case (Ro = ∞) with the rapidly rotating
one (Ro = 0.09). Figures 5 and 6 show several snap-
shots of the temperature and the vertical velocity
field for Ro = ∞ and Ro = 0.09, with Ra ranging
from 106 to 109.

At Ro = ∞, convection is dominated by a large-
scale circulation (Kunnen et al., 2008). Thermal
plumes are visible in the temperature field when
increasing the Rayleigh number. The flow shows
very different patterns at Ro = 0.09, i.e., in case
of strong steady rotation. Both the temperature
and velocity field exhibit long structures in the
vertical direction. These structures are generally
described as Taylor columns. According to the
Taylor-Proudman theorem, the flow tries to align
itself with the rotation axis (King and Aurnou,
2012). The vortices are created by Ekman trans-
port in the horizontal boundary layers, which lead
to the enhanced tranport of heat away from the wall
(Stevens et al., 2009). These vortices become par-
ticularly apparent at higher Rayleigh numbers. At
Ra = 106 for example, the effect of rotation is prac-
tically indiscernable in the temperature field. These
findings corroborate the previous assertion that ro-
tation can increase the heat transfer at Ra ≥ 107,
with respect to the non-rotating case.

5. Conclusions

We applied direct numerical simulations, on the
basis of a spectral element spatial discretisation
method, to study the scaling of heat transport
in rotating Rayleigh-Bénard convection in a cylin-
drical container with aspect ratio Γ = 1. For
Ro = ∞, we find Nu ∝ Ra0.29 in the studied
range of 106 ≤ Ra ≤ 109, which matches well
with the expected 2/7 scaling from literature. For
0.09 ≤ Ro ≤ 1.08, a similar scaling of the Nusselt
number seems to apply in the high Rayleigh num-
ber regime of Ra & 108. In this regime, the Nusselt
number also increases up to 18% for Ra = 107 and
15% for Ra = 109 with respect to non-rotating case.
The enhanced heat transport is linked to the verti-
cal vortices, created by the rotation of the system,
that are observed in the temperature and the ve-
locity field.
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