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Abstract

We present an exponential time-integration method for the incom-
pressible Navier—Stokes equation. An essential step in our procedure is
the treatment of the pressure by applying a divergence-free projection
to the momentum equation. The differential-algebraic equation for the
discrete velocity and pressure is then reduced to a conventional ordinary
differential equation that can be solved with the proposed exponential
integrator. A promising feature of exponential time integration is its po-
tential time parallelism within the Paraexp algorithm. We demonstrate
that our approach leads to parallel speedup assuming negligible parallel
communication.

1 Introduction

With today’s trend towards massively parallel computing, there is a growing
interest in parallel-in-time simulations. For the numerical solution of partial
differential equations, a parallellization in time could realize additional speedup,
when for example the maximum speedup with a parallellization in space is ap-
proached, e.g., see [40} [56]. Parallel-in-time simulations have received increased
attention after the introduction of the Parareal method [29] [42]; for earlier work
see, e.g., [8, 15, [61), 62]. So far, existing methods have not proven themselves to
be particularly efficient for parallel-in-time simulations of flows at high Reynolds
numbers. In this article, we introduce a time integration method that paves the
way to parallel-in-time simulation of incompressible fluid flows at high Reynolds
numbers.

Theoretical studies have shown that the parallel efficiency of Parareal for
hyperbolic problems is typically not optimal |26 29]. Also, numerical experi-
ments for the Navier—Stokes equation at high Reynolds numbers report limited
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performance [24, [57]. However, in [I8] speedup was achieved for high-Reynolds
simulations for which a turbulence model was deployed. For some hyperbolic
problems a stabilization of Parareal can be applied [9] 14} 28] [5T]. There are also
reports of cases in which Parareal succeeds, even for problems with little or no
dissipation. We mention simulations of, e.g., Hamiltonian systems [I3], highly
oscillatory PDEs [35], plasma turbulence [54], and gravitational collapse [41].

An interesting alternative, the Paraexp method, has been introduced in [27]
for the time-parallel solution of linear initial-value problems. With Paraexp,
the original problem is decoupled into nonhomogeneous and homogeneous sub-
problems. Parallel speedup is based on the observation that the homogeneous
subproblems can be solved very fast with exponential integrators. These are
time integration methods based on the exact integration of linear initial-value
problems. Exponential integrators require efficient algorithms to compute the
matrix exponential or its product with a vector. There are many methods for
computing the matrix exponential. Particularly, Krylov subspace methods prove
to be very suitable for the implementation of exponential integrators [16], 27 [48].
A detailed overview of exponential integrators is given in [36].

An extension of Paraexp to nonlinear initial-value problems has been in-
troduced in [39]. Preliminary tests show that parallel speedup is realistic for
the viscous Burgers equation, even for low viscosity coefficients. The approach
in [39] is based on the exponential block Krylov (EBK) method [4]. A difference
with the original formulation of Paraexp is that the exponential integrator, here
the EBK method, is used to solve both the nonhomogeneous and the homo-
geneous subproblems. This unified approach is demonstrated to be effective,
as the EBK method can also be very competitive in solving nonhomogeneous
subproblems compared to conventional time integration methods.

The application of exponential integrators to fluid dynamics is not straight-
forward. The incompressible Navier—Stokes equation, discretized in space, is a
differential-algebraic equation where a time derivative for the pressure is absent.
The continuity equation acts as a constraint equation that imposes a divergence-
free condition on the velocity field. The pressure is determined such that the
velocity field remains divergence-free. Consequently, special care needs to be
taken with exponential integration for the advancement of the pressure in time.
One possible approach is to reformulate the governing equations by treating the
pressure with a divergence-free projection of the Navier—Stokes equation. This
reformulation gives a differential equation for the velocity field that can be solved
with Krylov-based exponential integrators, see [I7), [50]. Other approaches for
Krylov-based exponential integration in the context of fluid dynamics include
the method of pseudo compressibility to find steady state solutions [53] and a
method for the fully compressible Navier—Stokes equation [55].

The EBK method and its potential parallelization with Paraexp have been
demonstrated for the viscous Burgers’ equation in [39]. Its application to in-
compressible flows is not trivial because of the structure of the governing equa-
tions. In this paper, we discuss how the EBK method can be extended to the
incompressible Navier—Stokes equation. This also paves the way for parallel-in-
time simulations of incompressible flows with Paraexp. We follow the approach
of [I7, 50] and treat the pressure by a divergence-free projection. The new
time integration method is tested in several numerical experiments including the
Taylor—Green vortex and a lid-driven cavity flow. We find that the EBK method
can be applied successfully to incompressible flows, also in cases with rather low



viscosity. Furthermore, we show that the EBK method can be used within the
time-parallel framework outlined in [39]. We provide a simplified model to an-
alyze how much speedup is feasible with the EBK method for parallel-in-time
simulations of the incompressible Navier—Stokes equation. This analysis indi-
cates that with our current implementation of the EBK method a moderate
parallel speedup can indeed be expected. This method could provide additional
speedup on top of the speedup obtained with a conventional parallellization in
space only.

The paper is organized as follows. In Section[2] we explain the basic principle
of the EBK method, and discuss how it can be applied to the incompressible
Navier—Stokes equation. In Section we test the method on a number of
test cases, including the Taylor—Green vortex and lid-driven cavity flow. The
potential parallel speedup of the EBK method is explored in Section |4l Finally,
the discussion and conclusions are presented in Section

2 Exponential time integration

In this section, we describe briefly the exponential block Krylov method, and
discuss its application to the incompressible Navier—Stokes equation.

2.1 Exponential block Krylov method
Consider the initial value problem (IVP) on ¢t € [0, T],

y'(t) + Ay(t) = b(t), y(0) = yo, (1)

where y € R” is the unknown function, b(t) € R", and A € R"*". We are
mainly interested in IVPs in the context of the method of lines, in which hy-
perbolic or parabolic partial differential equations are discretized in the spatial
dimensions first. The exact solution of is given by the variation-of-constants
formula, .
y(t) = exp(—tA)yo + /0 exp(—(t — 7)A)b(7) dr. (2)

Conventional time integration methods, e.g., the Euler method, use low order
approximations based on finite differences to the matrix exponential function.
Exponential integrators avoid such approximations by direct evaluation of the
matrix exponential function. In this study, we use the exponential block Krylov
(EBK) method to solve (1). Exponential integrators are in general attractive
due to their excellent stability and accuracy properties [36]. The EBK method is
demonstrated to be particularly competitive for solving (/1) compared to implicit
schemes, and also with respect to other exponential integrators [39]. The EBK
method is based on a so-called block Krylov subspace, which is generated by the
action of a matrix on multiple vectors simultaneously. For details of the EBK
method, we refer the reader to [4].

An essential step for constructing the block Krylov subspace is a polynomial
approximation of the source term of the form

b(t) ~ Uq(t) (3)

where U € R™™ and q(t) € R™ is a polynomial function of ¢. It is crucial
for successful applications of EBK that m is not too large, so that is in fact



a low rank approximation, see also [4]. A large m, which is the dimension of
the block in the Krylov subspace, is undesirable. In general, the dimension of a
Krylov subspace should remain small with respect to the original system for good
computational efficiency. Approximation can be efficiently constructed in
many ways [31,[47]. In this paper, we use truncated singular value decomposition
(SVD) combined with a piecewise polynomial function q(t) to obtain (3). The
error of the approximation on a given interval [0,7] can be reduced by
retaining more singular values (increasing m). If m is found to be too large
then we can decrease the time interval [0, 7] and repeat the construction of
which often leads to a much smaller m. In principle, the approximation error
in can be arbitrarily small, assuming b(¢) is smooth (see for example [58]|
Section 2.4] for convergence properties of spline interpolation).

We define s nodes on the interval t € [0,T], 0 = tg < t1 < ... < t5 =
T. The polynomial approximation of b(t) is based on the matrix of samples
B = [by...bg], where b, := b(t;). For optimal efficiency of the EBK method,
we use a truncated SVD of E, which reduces the dimension of the block size
m substantially with respect to the original dimension of B. From the SVD,
we find an approximation . Here, Uq(t) represents the m leading singular
vectors of the SVD of b(t). Based on a block of vectors U instead of a single
vector, we can define the block Krylov subspace

Ki(A,U) == span {U, AU, A*U,..., AU}, (4)

where [ is the Krylov iteration index. A linear basis of the block Krylov subspace
is generated by the block Arnoldi or by the block Lanczos process, if A is
symmetric (see [52]). After the basis has been computed, the original IVP
can be projected onto the block Krylov subspace using the orthogonality of
the basis vectors [4]. The dimensions of the projected IVP are typically much
smaller than of the original problem (Im < n). Because of its strongly reduced
problem size, the projected IVP can be solved cheaply and accurately (to any
desired tolerance) with a general ODE solver (see “Method 5” in [48]). This
step is performed at every Krylov iteration. The Krylov iterations, incrementing
l at every iteration, stop when the exponential residual meets the stopping
criterion [5]. The accuracy of the numerical solution is thus controlled by the
residual in the block Krylov process and by the low rank approximation .
The approximation on t € [0,T] can be improved by either taking more
samples s, or by saving more singular values m.

2.2 Incompressible Navier—Stokes equation

In Section 2.1} we have introduced the EBK method for solving the linear
VP . In this section, we present an algorithm in which the EBK method is
used for exponential time integration of the incompressible Navier—Stokes equa-
tion. We consider the incompressible Navier—Stokes equation on a d-dimensional
space domain € (d = 2 or d = 3) with boundary 9. The governing equations
in Q x [0,7] are



with appropriate boundary conditions on 9. Here, @ € R? is the velocity vec-
tor, p the pressure, and v the kinematic viscosity. We follow the method of lines
approach by discretizing in space first. There are many suitable discretization
techniques for the Navier—Stokes equation, with popular choices being finite vol-
ume and finite element methods [23] [65]. These discretization methods typically
result in a semi-discrete system of the general form

Gu' + Nuwu+Bip+A,u=f u(0)=u’ (7)
Bu=g, (8)

where G is the mass matrix, N(u) is the convective operator, B the divergence
operator, BT the gradient operator, and A, the viscous operator. We emphasize
that time remains an independent variable and u = u(¢) is still a function of
time with derivative u’. Note that some discretization methods may slightly
deviate from the general form. For example, for inf-sup unstable finite element
spaces an additional stabilization term is added to the continuity equation [23].
For some discretization methods, it holds that the mass matrix G is the identity
matrix. The vectors f and g may depend on the boundary conditions on the
velocity field, and thus are not necessarily zero. We consider problems with
n,, degrees of freedom (DOFs) associated with the velocity field components,
and n, with the pressure field, i.e., (u,p) € R¥*"» The DOFs n, and n,
may differ, depending on the spatial discretization. The pressure and velocity
components are located at different gridpoints when for example different finite
element spaces are used for the velocity and the pressure, or when a staggered
grid is used in a finite volume method.

Equations and form essentially a differential-algebraic equation in
which the discretized continuity equation can be seen as an algebraic con-
straint on the velocity field. The differential-algebraic nature of this equation
is different than the basic ODE, given by . We note that the compress-
ible Navier—Stokes equations are less complicated in that sense, because a time
derivative is present also in the continuity equation. Therefore existing expo-
nential integrators can be readily applied to compressible Navier—Stokes equa-
tions [55], while for incompressible flow this is more challenging.

Equation cannot be integrated directly with the EBK method, because
of (a) the nonlinear convection term, and (b) the algebraic constraint on u in
the form of the discrete continuity equation. We now present an approach on
how to handle these issues.

The nonlinearity of the problem can be dealt with by incorporating the EBK
method into an iterative procedure [39]. Namely, the nonlinear term is linearized
about a state u, specified later, as follows

N(uk+1)uk+1 ~ N(uk)uk + N(l_l) [uk+1 — uk], (9)

where k is the iteration index. Instead of N(u), one could use the Jacobian
matrix of the nonlinear term as well. In many codes the matrix N(u) is readily
available, which makes the implementation of the linearization above easier in
practice. Using this linearization the momentum equation becomes

Gl iy + [Ay + N(@)]up g1 + BT pryr = i, (10)
Bupi =g. (11)



We will work with @ as the average of uy on [0,7], such that the matrix [A, +
N(u)] is independent of time, similar to (). It should be noted that uy(t)
is the solution at iteration k on the complete interval [0,7]. In practice, the
solution is stored at multiple temporal points as a matrix Uy = [ul...u®]. The
iterative process is usually started with a constant vector ug = u(0), and for
1, we normally take a time-average u = % fOT uy(t) dt. The right-hand side fj,
contains the nonlinear remainder,

fr = £ — [N(ug) — N(@)]ug. (12)

Next, we deal with the pressure in . We manipulate in such a way
that the pressure is eliminated.
Multiplying with BG™!, we find

Bujyy + BGH([A, + N(@)]ugr1 + BT pry1) = BG . (13)

To simplify this equation, we use the time derivative of the continuity equa-
tion , which reads
Bup,, =g’ (14)

Substituting relation into gives us an algebraic equation for the pres-
sure,

BG'BTpyyy = [BGY(fy, — (A, + N(a))u;) — Bg'], (15)

which is essentially a discrete Poisson equation, since BG~!BT represents a
discrete Laplace operator. Substituting the solution of into (|10) removes
the pressure from the momentum equation,

u, ., + P[A, + N(0)|ugy1 = P, — G 'BT(BG'BT) g/, (16)
where, to simplify notation, we have introduced the projection operator,
P:=G'-Gc'BY(BG'BY)"'BG. (17)

Note that P projects discrete velocity fields onto a (discretely) divergence-free
space that satisfies the condition Bu = 0. We note that for some discretizations
the explicit calculation and storage of G~! is not practical, but in general the
action of G~! on a vector is easily computed with direct or iterative linear
solvers. The matrix P is also never calculated explicitly for the same reason.
Our procedure of treating the pressure in the momentum equation is in the same
vein as classic pressure correction or fractional step methods (see, e.g., [10] 34]
37, 59 63]). In fact, the projection operator in [63] is identical to in the
case of G = 1.

The projection P is essentially the discrete equivalent of the Leray pro-
jection [ITL 25]. It is easy to verify that the projection P has the analogous
properties

1. P?u = Pu, for all u € R,

2. BPu =0, for all u € R%,

w

. Pu=u, for all {u € R¥+|Bu=0},

=~

PBTp =0, for all p € R",



Equation is a linear IVP that can be solved with the EBK method, cf. .
A similar approach for exponential integrators for the incompressible Navier—
Stokes equation is given by [50]. In our case, the projection operator P is derived
directly from the semi-discretization in @

At each iteration k the EBK method is employed to find ug1 by solving .
Therefore, EBK can be seen as an inner iterative process, and iterations k
as outer iterations. The convergence of the outer iterations has been studied
in [46] [66] (in a slightly different context of waveform relaxation methods). The
convergence is generally slower if the nonlinear term becomes larger, and it will
be investigated whether the convergence is still sufficient for our application [39].
The outer iterations can be stopped if they are converged within a certain
tolerance,

luk+1 — uglleo < tol, (18)

which does not only show the stagnation in iterations but also controls the non-
linear residual [39]. Generally, the tolerance for the nonlinear residual should be
in the same order as the tolerance for the exponential residual, i.e., the stopping
criterion for the inner iterations of the EBK methods. After the outer iterations
are ended, we form the matrix U = [ul...u®] that is comprised of s samples of
the solution u(t) on the interval [0, T]. This time interval is typically much larger
than the time step size At of traditional time integration methods restricted by
a Courant—Friedrichs-Lewy (CFL) condition. In numerical experiments in [39],
we find T/At = O(10%) for example.

2.3 Other exponential integrators

In the previous section, we have discussed how the incompressible NS equa-
tion can be rewritten in a form that fits Eq. . In this case, we have A =
P[A, + N(u)], where P is a projection matrix. In principle, one could ap-
ply several exponential integrators to this equation. A stimulating overview
of existing schemes is given by [30, 43| [44]. We mention for example the ex-
ponential integrators for stiff systems proposed by [12]. The schemes in [12]
are highly suitable for partial differential equations in periodic domains that
can be discretized with spectral methods. The resulting matrices are diagonal,
which allows a trivial computation of the matrix exponential. These schemes
are however less suitable for the incompressible Navier-Stokes (NS) equation in
general domains, where the matrix is generally not diagonal. The method relies
on the explicit calculation of the matrix exponential e, where h is a time step
size, and the (pseudo-)inverse of A, which would be very expensive in terms of
computation time and memory consumption.

In our application, we have to deal with the projection matrix P, which we
do not wish to calculate explicitly. Krylov-based methods are very attractive in
this case, because they allow a matrix-free implementation. In other words, they
only require the calculation of the matrix-vector product of A with a vector—
not the calculation of the actual matrix itself. Exponential time integration
for the Navier—Stokes equation has not received much attention so far, but a
few Krylov-based exponential integrators in the context of fluid dynamics have
been proposed. An application for the compressible NS equations is for example
discussed in [55]. The solution of the compressible formulation is easier in a
sense, because the divergence-free velocity constraint is absent. Steady solutions



to the incompressible NS equation can be found using the method of pseudo-
compressibility [53]. The application to the incompressible NS equation is more
complicated. The equations have to be rewritten, because the mass matrix is
not invertible. This approach is taken by [I7], [50] and very similar to the one
we discussed in Section 2:2] The main difference is that in our approach the
NS equation is discretized in space first. The projection matrix then follows
naturally from rewriting the semi-discrete equations, and is consistent with the
boundary conditions of the original equations.

An important aspect of the EBK method is the potential parallelization in
time based on the Paraexp algorithm, which is demonstrated in [39]. As shown
in [39], the maximum parallel efficiency is normally bounded by 1/Kp, where
Kp is the number of iterations of the time-parallel method. That means that if,
for example, two iterations are required, the parallel efficiency is already down
to at most 50%. Because the EBK method requires iterations anyway because
of the nonlinearity, those iterations can be intertwined. The upper bound on the
parallel efficiency can then be relaxed to Kg/Kp, where Kg is the number of
iterations of the sequential EBK method. In practice, it safe to assume that the
parallel version requires more iterations, i.e., Kp > Kg. In the ideal case, Kg
would be very close to Kp, which would then allow for near-optimal parallel
efficiency. This makes the EBK method, in comparison to other exponential
integrators, an interesting candidate for parallelization in time.

3 Incompressible flow simulations

In Section [2 we covered the basics of the EBK method, and how it can be
applied to the incompressible Navier—Stokes equation. In this section, we now
present several numerical experiments with our time integration method. These
experiments involve a Taylor—Green vortex and lid-driven cavity flow.

The governing equations are discretized in space with a finite element method
implemented in the MATLAB package IFISS [20] 2I]. In our numerical experi-
ments, we are using Taylor-Hood (Q2—Q1 elements. This means that the velocity
components are approximated with continuous piecewise quadratic polynomials,
and the pressure with continuous piecewise linear polynomials. Taylor—Hood el-
ements are inf-sup stable [23].

The projection operator requires the solution of a linear system. Be-
cause the test and trial functions are nonorthogonal, the mass matrix G is not
diagonal in our case. Therefore, it is not practical to explicitly construct the
discrete Laplace operator, BG~'BT. Instead of constructing this matrix, we
simply solve the block-coupled system,

G BT| (v v*

5 1G)-(0) o
where v,v* € R% and A € R". The linear system is solved with a direct
solver in MATLAB. It is not hard to verify that the solution of is equivalent

to the action of the projection operator, v.= Pv*, as defined in . With a
block Gaussian elimination, the system can be reduced to

[g BGB?BT} (K) = ( BGV*1V*> 7 (20)



After back-substitution, we find the solution for v,
v=G'v' -G 'BY(BG'BT)"'BG'v*. (21)

This solution is indeed identical to v = Pv*, according to the definition of
P . If the problem size of becomes too large for direct solvers, iterative
solvers can be used. In practice, variations of the Uzawa algorithm are a possible
choice for solving the saddle-point problem by decoupling v and A, see [45].
Alternatively, block coupled solvers are feasible with efficient preconditioners [I]
2, [19, 22]. For a recent overview see [23].

To ensure that the initial condition satisfies the discrete continuity equation
at t = 0, the velocity field is projected onto a divergence-free space. We correct
the initial condition by solving the linear system

G BT] (u° a’

o V() - (o) @
where @° is the uncorrected initial condition. As a result, the initial condition
satifies Bu® = g(0).

3.1 Taylor—Green vortex

In the first test case, we consider the so-called Taylor—Green vortex, for which
an exact solution to the unsteady Navier—Stokes equation is known, given by

. _ (—sin(nz) cos(my) exp(—2m2wt)
(@, y,t) = ( cos(mx) sin(ry) exp(—27w2vt) |- (23)
We solve the problem numerically on a square domain, = [—1,1]x[—1, 1], with

time-dependent Dirichlet boundary conditions and initial condition consistent
with (23). In other words, the values of the boundary conditions and initial
condition follow from the evaluation of the exact solution at the boundaries or
at time zero.

The right-hand side (RHS) in is calculated on Ny nodes (time moments),
which is necessary to construct the low rank polynomial approximation in .
The nodes are equally spaced in time with a distance At. The step size At is
not restricted by stability conditions, but we use the Courant number to get
a natural estimate of an appropriate At. Here, we choose At to satisfy the
condition C' = uAz/At < 1, where v = 1 (initially) and Az is the spatial
distance between the finite element nodes. Also, we preserve m = 4 leading
singular values from the SVD, which appears to be sufficient for our purpose.
This initial choice of parameters is based on prior experiments [39], but could
still be optimized. We discuss the influence of m and N, later in Section |3.2

Equation is integrated by the EBK method using a residual tolerance
of tol = 1073, which is sufficient in this case. The outer iterations are stopped
when the stopping criterion is reached, using the same tolerance of 1073.
To reach the tolerance, typically four outer iterations in total are required.

We integrate from ¢ = 0 to t = 1, and measure the numerical error in the
z-component of the velocity at the final time, measured in the relative L2-
norm, |[u — et/ ||tiret]]. In this case, the numerical error is mostly determined
by the spatial discretization. Figure [l shows the error varying with the spatial



resolution for several values of v. The error is generally larger when v decreases,
which is related to the tendency of central discretization schemes to produce
small “wiggles” at higher mesh Reynolds numbers, i.e., for advection-dominated
flows. Similar wiggly behavior has been observed using the default Crank—
Nicolson scheme of IFISS. In such cases, the accuracy can be improved by
using a finer mesh or by using a higher-order upwind-type discretization of the
advection term [32]. Furthermore, the error shows approximately fourth-order
convergence with Az, which is one order higher than expected from typical error
estimates [23]. This form of superconvergence might be attributed to the high
regularity of the exact solution [64].

We have demonstrated the convergence of the underlying spatial discretiza-
tion of the governing equations. The total numerical error in this test case is
dominated by the spatial discretization. We can examine the time integration
error in isolation by comparing the solution to a reference solution. Here, we
calculate a highly accurate reference solution with a simple Euler method fol-
lowed by Richardson extrapolation. Figure |2 shows the time integration error
against the number of modes, m. The error is measured in the relative L2
norm, ||u — yefl|/||tref||. It shows that increasing m can lead to a strong reduc-
tion in the error, if the tolerance is sufficiently low. The influence of the EBK
parameters on the error are examined in more detail in the next section.

L2 Error Norm
-
o
w

10 . . .
0.04 0.06 0.08 0.1
Az
Figure 1: Taylor—Green vortex: error in x-velocity at ¢ = 1 versus spatial
resolution. x v =10"2;0v =10"2%; v =10"% — — O(Ax?).

3.2 Lid-driven cavity flow

Lid-driven cavity flow is a well-known benchmark problem used to test solvers
for the Navier—Stokes equation, see for example [6, B0]. In this section, we
analyze the performance of the EBK method in simulations of lid-driven cavity
flow. In this case, the exact solution to the Navier—Stokes equation is not known,
but we compare EBK-based results with the Crank—Nicolson method, which is
implemented as the default timestepping method in IFISS [38].

We study lid-driven cavity flow in a square domain, Q = [—1,1] x [—1,1].
No-slip boundary conditions apply at the side and bottom walls. The velocity
in z-direction at the top boundary, the “lid” of the cavity, is prescribed by the
function U(z,t). The geometry and the boundary conditions of the problem are

10
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Figure 2: Taylor-Green vortex for v = 1072, N; = 17, and Az = 1/16: error in
x-velocity at t = 1 versus m. [J tol = 1072; o tol = 1073.

sketched in Fig.

u=v=20

Figure 3: Geometry and boundary conditions of a lid-driven cavity flow. The
domain is Q@ = [-1,1] x [-1,1].

3.2.1 Stokes flow

First, we simulate unsteady Stokes flow in a cavity, i.e., ignoring the nonlin-
ear convection term in , which would approximate laminar flow at very low
Reynolds numbers. The initial condition is @ = 0, and the lid is accelerated
gradually from zero to a steady velocity, spinning up the flow in the cavity. The
lid velocity is given by

Ul t) = (1 —2®)(1+2?)(1 - ). (24)

Note that the boundary conditions are regularized to prevent corner singular-
ities, i.e., the velocity discontinuities at the top corners, see for example [7].
Otherwise very high spatial resolution is required to accurately resolve the solu-
tion near those points. In this case, the time-dependency of the RHS in only
comes from the transient boundary condition , and not from the nonlinear
term.

11



Without the presence of a nonlinear term, no outer iterations are needed,
and we can focus on certain aspects of the EBK method in more detail. The
accuracy of the EBK method mainly depends on the low rank approximation
of the source term (3). The main parameters are (a) the number of source term
samples, Ny, and (b) the number of modes from the truncated SVD, m.

As explained in Section the numerical error of the EBK method de-
pends on the residual tolerance and the error in low rank approximation of the
RHS . In the following test, we use a low residual tolerance of tol = 10719,
such that the numerical error mainly depends on the accuracy of the low rank
approximation. For the spatial discretization, we use 16 x 16 finite elements,
which amounts to 33 x 33 grid points for the velocity field components.

We can define a Reynolds number based on Re = U,fL/v, where U,op =
1 is the maximum lid velocity and L = 2 is the cavity length. In this test
case, the viscosity coefficient is ¥ = 0.02, which corresponds to Re = 100. We
integrate from t = 0 to ¢t = 1. A reference solution is computed with the Crank—
Nicolson method using a small time step size and Richardson extrapolation.
The error in the z-velocity is measured in the relative L2-norm. Figure 4| shows
the numerical error at ¢ = 1. As expected, the accuracy increases with the
number of samples N;. Also, the error in the continuity equation decreases with
Ny, because the RHS is approximated more accurately. Both errors display
fifth-order convergence with N; here. Because the approximation is based on
cubic spline interpolation, we should expect at least a fourth-order convergence.

A time-consuming part in the EBK method is the block Arnoldi process,
which generates an orthonormal basis of the block Krylov subspace. At every
Krylov iteration, the action of the matrix P(A+ J(@)) on m vectors is required.
This matrix action is not a simple matrix-vector multiplication, as the matrix
P(A+ J(u)) is not calculated explicitly. Because P involves the solution of a
discrete Poisson problem, see ([17)), each Krylov iteration is at least as expensive
as a Poisson solve. An SVD shows however that the singular values may rapidly
decrease in magnitude, see Fig. [5| for example. The difference between the
second and third value is several orders of magnitude in this example. Thus, in
this case, we can save considerable computational work by truncating the SVD
with m = 2 without losing any accuracy in practice. Using m = 2 for example,
we achieve a relative error of 1.671E-09, see Fig. [d If we use m = 32 instead,
the error reduces slightly to 1.391E-09. In other words, the truncation of the
SVD (in this case with m = 2) does not lead to a significant loss of accuracy.

Figure [6] shows the number of matrix actions required by EBK against the
number of samples. The number stays constant for m = 2, but increases strongly
when increasing m = Ny, i.e., no truncation. In this case, a significant number
of matrix actions can be saved with a truncated SVD, which improves the com-
putational efficiency of the EBK method significantly, with practically no effect
on the accuracy of the solution. In some cases, the number of matrix actions
can be reduced from 1248 to 114, see Fig. [6] This shows that a truncated SVD
is instrumental in realizing good computational efficiency of the EBK method
in practice.

3.2.2 Steady state

Steady state solutions to lid-driven cavity flow are well-studied in literature [6]
30]. In the following test case, we use the EBK method to solve the steady
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Figure 7: Steady state solution of lid-driven cavity flow at Re = 100, shown by
the velocity components along lines through the geometric center of the cavity.
— EBK (33 x 33 grid), O Ghia et al. [30].

Navier—Stokes equation. We verify that the EBK method indeed converges to
the correct steady state. In this case, we use an equidistant grid of 16 x 16
elements, i.e., 33 x 33 gridpoints. The flow is initialized as a solution to Stokes
flow. Using this initial condition, the Navier—Stokes equation is integrated over
a long time interval ¢ € [0, Tenq] until the solution reaches a steady state.

Based on the results in Fig. |5} we use m = 4 to capture the relevant modes.
Also, we use Ny = 33, which corresponds to a CFL number of C' = 5 in case
of Teng = 10. Also, we use tol = 1073 for controlling the exponential and the
nonlinear residuals. The precise choice of parameters matters very little in this
case. We have observed that the accuracy of the time integration method has a
marginal influence on the error of the steady state solution.

The steady solution at Re = 100 is plotted in Fig. [7} for which we used
Teng = 10. The results obtained with the EBK method are in good agreement
with the reference data from [30]. The EBK method yields the correct steady
state solution. We also compare the EBK method to the default steady Navier—
Stokes solver of IFISS, which provides us with a reference solution (on the
same mesh). The errors of the velocity profiles, measured in the relative L2-
norm, are given in Table [I| In general, the EBK method agrees well with the
default steady Navier—Stokes solver in IFISS. The final time appears to be the
main parameter influencing the error. Increasing T,,, decreases the error as
the solution becomes closer to the true steady state. Long time intervals are
needed because the transient solution approaches the steady state rather slowly,
especially in cases with low viscosity.

3.2.3 Oescillating lid

In this section, we examine the transient solution of a lid-driven cavity flow. In
this case, the lid velocity oscillates in time. As such, the solution is intrinsically
unsteady and will not tend to a steady state asymptotically. The lid velocity is
prescribed as

Uz,t) = (1 —2*)(1+2%) (1+ 3sin(2nt)) . (25)
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Table 1: Error in L?-norm of the steady state solution of lid-driven cavity flow
at Re = 100.

Teng Error uw  Error v

10 796E-3 1.55E-2
20 1.36E-3 2.32E-3
40 1.72E-4 3.12E4
80  4.63E-5 8.54E-5

We use a 33 x 33 grid, which was shown in Section [3.2.2] to be an adequate
resolution for resolving the steady state solution at Re = 100. In this case, we
want to calculate a time-accurate solution, and the RHS in is evaluated
at N; = 33 points on the interval ¢ € [0, Te,qg). This corresponds to a Courant
number of approximately C = 0.5, which is below the typical stability limit
of explicit time-stepping methods. We calculate the solution at T,,q = 1, i.e.,
after one oscillation of the lid. An accurate reference solution is computed
with the CN method, which is the default timestepping method of IFISS. As in
Section we measure the error in the u-profile along the vertical centerline
of the cavity, and in the v-profile along the horizontal centerline. The errors are
measured in the relative L?-norm.

The errors are shown in Fig. [B]for two different Reynolds numbers. The error
decreases as the number of SVD modes increases, until the error is limited by
the tolerance of the EBK method. This shows that a stricter tolerance is needed
for higher m in order to achieve a higher accuracy. For example, at m = 4 and
Re = 100 the choice of the tolerance does not influence the total accuracy, and
a tolerance of 1072 would suffice. Note that the matrix-vector multiplications
are expensive in the EBK method, because they involve the projection matrix
P. The number of matrix actions is proportional to m. Therefore it would be
beneficial not to take m too large. The results for Re = 100 and Re = 1000
are both very similar, which suggests that the Reynolds number has a limited
influence on the accuracy of the EBK method.

Instead of computing the solution on the entire interval [0, Te,q] directly, one
could divide the interval into multiple subintervals of size AT'. The solution on
the subintervals are then computed sequentially. The number of outer itera-
tions depends largely on the size of the time interval AT. Figure [9] shows the
number of iterations as function of the time interval size AT. As AT increases,
more iterations are required to achieve a given tolerance, The number of matrix
actions, which are an important indication of the computational costs, does not
necessarily increase by increasing AT however. Also, the Reynolds number plays
a role. As the Reynolds number increases, the nonlinearity becomes stronger
and more iterations are needed. At Re = 3000 we see a significant increase for
AT > 0.25 for example. We also measure the total number of matrix actions,
Npat, which involves the matrix P[A + J()]. This provides a reasonable es-
timate of the computational cost. For Re = 1000 and Re = 3000 the number
of matrix actions starts to increase from AT > 0.25, due to the considerable
increase in the number of iterations. In practice, the optimal AT can be deter-
mined by experimentation. These results suggest that it is preferable to choose
AT as large as possible, without the number of iterations becoming excessively
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4 Parallellization in time

In this section, we describe how the EBK method can be parallelized. We
provide a basic model to study the potential scaling for the incompressible
Navier—Stokes equation and determine the conditions under which EBK can
become competitive in terms of computing time.

4.1 Parallel algorithm

The EBK method can be parallelized in time naturally with the Paraexp method,
which is based on “parallel exponential propagation”. The Paraexp method was
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introduced as an efficient parallel-in-time algorithm for nonhomogeneous differ-
ential equations [27]. One advantage of Paraexp is that its parallel performance
does not deteriorate for hyperbolic PDEs or parabolic PDEs with little dissipa-
tion. Although the well-known Parareal method is known to work successfully
for some hyperbolic problems, e.g., [9, 14} 28 4T, [51], convection-dominated
flows were generally found to be highly challenging for Parareal [57]. The EBK
method allows for a natural extension of the Paraexp method to nonlinear PDEs.
Kooij et al. [39] show that realistic speedup can be expected for the advection—
diffusion equation and the viscous Burgers equation.

The idea behind the Paraexp method is that a linear problem can be decou-
pled into independent subproblems using the principle of superposition. In our
case, we solve in parallel at every outer iteration. This equation is of the
form,

y'(t) = Ay(t) +g(t), y(0)=0, tel[0,T]. (26)

Here, without loss of generality, we assume that the problem is transformed to
have a zero initial condition. This means using a substitution y(¢) = ¥(¢) — yo,
where ¥(t) is the solution to the original problem with the nonzero initial con-
dition yo. In the case of nonlinear problems, is updated at every outer
iteration. The matrix A contains the Jacobian matrix of the nonlinear term
averaged over ¢t € [0,7], and the source term g(¢) contains the nonlinear re-
mainder. The Jacobian matrix is time-averaged, such that A does not de-
pend on ¢t. The time interval is divided into P non-overlapping subintervals,
0=Ty<T) <...<Tp=T. Based on these subintervals, we define g;(t) as
the piecewise function

] o g(t), for Tj,1 <t< Tj7
g;(t) = { 0, otherwise. (27)

Next, the original problem can be written as the combination of P independent
problems,

vi(t) = Av;(t) +g;(t), v;(0)=0, tel[0,T] (28)
These problems can be solved in parallel on P processors and do not require

any communication during the solution procedure. It is easy to see that the
solution to (26)) is the sum of the solutions to the subproblems ,

P
y(t) = v;(0). (29)
j=1

Parallel speedup is expected on the observation that the source term is zero in
all but one subinterval. The closed-form solution in the homogeneous part of

is given by
vi(t) =exp ((t —T;)A) v;(Ty), t=>1Tj, (30)

which is also called the exponential propagation of the solution. The matrix ex-
ponential in can be evaluated very efficiently [48]. The computation time
of is typically negligible compared to the time needed for solving the non-
homogeneous part of [27]. For a fast evaluation of , efficient algorithms
for calculating the matrix exponential or its action on vectors are needed. These
methods are typically much faster than traditional timestepping methods. Each
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parallel processor only deals with a part of the original nonhomogeneous prob-
lem. Parallel speedup is based on this premise. In the original formulation
of the Paraexp method the nonhomogeneous part is solved by an off-the-shelf
ODE solver. With the EBK method, we can take a unified approach by solving
both the homogeneous and the nonhomogeneous part of (28)) with the same
time integrator. Such a unified approach is shown to be more effective than an
original implementation of the Paraexp method [39].

4.2 Speedup and efficiency

We consider strong scaling when integrating on a fixed interval ¢ € [0, AT]. The
wall clock time of the sequential algorithm is 7; = 7 K7, where 77 is the time
of one EBK solve on the interval AT and K is the number of outer iterations.
The wall clock time of the parallel algorithm is 7p = 7p Kp = (Tun+71+7c) Kp,
where 7p is the wall-clock time of one outer iteration, 7, the solver time for
the nonhomogeneous part of the IVP, and 75, for the homogeneous part. Here,
7. denotes the communication time between the parallel processes per outer
iteration, and Kp the number of outer iterations of the parallel EBK method.
In the case of P = 1, we simply have 7,, = 71 and 7, = 7. = 0. After every
outer iteration, the solutions of the subproblems are summed and the source
term, containing the nonlinear terms, is updated with the latest solution. These
operations are included in 7.. The parallel efficiency is then calculated as
Ti 71 K1

= = . 31
K PTp  P(rawn+ 1+ 1) Kp (31)

This expression shows that ideal efficiency of 1 ~ 1 is obtained under several
conditions. First, the time spent on the nonhomogeneous part should be pro-
portional to P, 7,, = 71/P. Second, the time spent on the homogeneous part
should be much less than the nonhomogenous part, 75, < 7. Third, the com-
munication time should be relatively small, 7. < 74 + 75, Finally, the required
number of outer iterations should not increase, Kp < Kj.

Note that 7, represents the cost of solving the homogeneous part. We use a
direct solver to solve Eq. when applying the projection operator. For larger
systems, an iterative solver is needed and 7, will vary depending on the number
of iterations. Assuming an appropriate preconditioner is used, the number of
iterations should not vary greatly. So, we do not expect this to cause significant
load imbalances in time. If possible load imbalances would occur in practice,
they could be mitigated by adapting the size of the subintervals, see [27].

Under some assumptions, we can propose a simple model for predicting the
maximal speedup that can be achieved. In the ideal case of perfect parallel
efficiency, we have 75, < 7,5, but in practice 73, needs to be taken into account.
We can write 75, as a fraction « of 7, i.e., 7, = am,,. In practice, « is
greater than zero, depending on the number of subintervals/processors P, i.e.,
a = a(P) > 0. Based on observations shown later, we expect « to be around
0.1. The parallel speedup is

Ti 1 Ky

S = T T A aP)rm T Kr (32)

The Jacobian matrix is time-averaged over each subinterval individually. It is
safe to assume that Kp < K, because the nonlinear correction, using a time-
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averaged Jacobian matrix, is more accurate on smaller subintervals. For now,
we assume that the communication is negligible, 7. = 0, and that 7,5, = 71 /P,
corresponding to the fact that 7 relates to EBK on the whole interval and
7p to EBK on one of the subintervals. We assume that 7p» < 7y, because
the nonhomogeneity is limited to a smaller subinterval (AT /P). Under these
assumptions, the expression for the speedup can be simplified to

P
5= 1+ a(P) (33)
A low value for « is important for high parallel speedup. In a worst-case scenario,
we could have 7, + 7, = 71. Assuming 7,, = 71/P, we would then find
a = P — 1, and hence no speedup at all with S = 1. The value « = P — 1
is maximum value that can be expected realistically. This situation occurs if
traditional time-stepping methods, instead of exponential integrators, are used
for calculating the exponential propagation[30} In other words, the homogeneous
part of is not solved substantially faster than the nonhomogeneous part.
However, in our case we use EBK and this effect does not play a role. This is a
key motivation for adhering to EBK as a method for time-parallel integration.
The wall-clock times of the EBK and the CN method from the experiment
of the Taylor-Green vortex, see Section [3.1] are listed in Table[2]for Az = 1/32.
These computations are performed for AT = 10 and Re = 100. The time
required by the EBK method corresponds to 71 here. For the EBK method, we
use N; = 33, m = 4, and tol = 1073, For the CN method, we use the adaptive
scheme described in [38] with a tolerance of 10~7. Using these parameters, both
methods have a very similar accuracy, as shown in Table [2]
The EBK method is generally slower than the CN method: by a factor
4 typically. In other words, the parallel speedup needs to be at least 4 for
the EBK method to break even with the CN method in terms of computation
time. The parallel speedup is illustrated for several a(P) in Fig. taking
a(P) = ¢(P — 1) and considering the dependence of S on a constant c¢. The
case o = 0 corresponds to ideal speedup, i.e., the homogeneous parts have
zero cost. As the cost of the homogeneous part increases with respect to the
nonhomogeneous ones, « increases and the parallel efficiency decreases. The
curves move away from the ideal line as « increases. This figure illustrates that
the EBK method can only break even when « is sufficiently small.
When we assume that o = ¢(P — 1), where ¢ > 0 is a constant, we can
examine the speedup as P approaches infinity. In that case, the limit of the

speedup is P .
Ph—{nooSil—l—c(P—l)ic' (34)
When the Jacobian matrix is averaged over each local subinterval, the EBK
method performs close to ¢ ~ 0.32. That means the maximum speedup is
1/c = 3.125 and it will not be able to break even with the CN method. However,
the Jacobian matrix can be averaged over the total interval. The homogeneous
problem can then be solved as a single problem, because the matrix does not
vary per subinterval. In that case, the performance is close to ¢ &~ 0.08. In other
words the maximum speedup is 1/¢ = 12.5 and it is possible to surpass the CN
method in terms of computation time, as shown in Fig.
We note that for the parallel EBK method, the total time interval, [0,7],
is fixed. The interval is divided into smaller subintervals, according to the

19



number of processors: AT = T'/P. Because the total time interval does not
increase with the number of processors, we do not expect the number of outer
iterations to increase. On the contrary, the number of outer iterations is likely
to decrease, when the Jacobian matrix is averaged over each local subinterval.
The linearization is then more accurate, which improves the convergence of the
nonlinear iterative process. This idea is supported by numerical experiments
in [39]. Also, the number of samples N; per subinterval decreases with P, such
that Ny = 32/P + 1, where P < 32. Using an equidistant temporal grid, the
solution is then always calculated at the same temporal nodes. This also means
that the number of SVD modes must be reduced for very high P, because m
cannot be larger than N;. In this experiment, we have used m = min(4, V;).
This might explain why we observe a slight additional speedup at P = 32, above
the theoretical projection of a = 0.08(P — 1).

The parallel efficiency appears to remain relatively low, because the ho-
mogeneous parts are not solved substantially faster than the nonhomogeneous
parts. The EBK method may be improved by the so-called shift-and-invert
(Sal) technique [4]. The Sal-technique is based on a rational Krylov subspace,
which improves the convergence by emphasizing small eigenvalues [49, [60]. The
expected faster convergence would make the EBK method more competitive
with the CN method already at lower numbers of processors. Also, we might
get closer to the ideal situation in which 7, < 7,5,. This would increase v and
therefore reduce the parallel speedup. The realization of the Sal-technique is not
straightforward, because of the differential-algebraic nature of the Navier—Stokes
equation. The possible implementation and improvements of the Sal-technique
will be explored in future studies.

Table 2: Computation time of the serial execution of the EBK and the CN
method for the Taylor-Green vortex at Re = 100. The (maximum) mesh

Reynolds number Rej, is also indicated. The last column contains the ratio
between the CPU time of the EBK and the CN method.

EBK CN
Az Rey, Error CPU Error CPU | Ratio

1/32 3.125 | 1.924E-4 67.8s | 2.023E4 16.9s | 4.01

5 Conclusions

The EBK method is an exponential time integration method which we have
extended in this paper to the incompressible Navier—Stokes equation. The pres-
sure is treated by introducing a divergence-free projection operator, whereas
the nonlinear convection term is taken care of by a process of outer across-
time iterations. In these iterations, the nonlinear term is handled as a source
term, evaluated with the solution of the previous iteration (on the complete
time interval). This approach is very similar to waveform relaxations.

The spatial discretization of the NavierStokes equation is carried out by a fi-
nite element method. In several numerical experiments, we demonstrate that the
EBK method can produce highly accurate time solutions. Furthermore, a major
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Figure 10: Parallel speedup for several a(P), where o = 7, /7. The dashed
line indicates the break-even point of the EBK method with the CN method.
o Jacobian matrix averaged over each subinterval. x Jacobian matrix averaged
over the complete time interval.

advantage is that the EBK method is suitable for parallel-in-time simulations.
With a simplified model we have analyzed the potential speedup. We estab-
lish that parallel speedup for parallel-in-time simulations of the incompressible
Navier—Stokes equation is indeed feasible with the EBK method. The efficiency
of the EBK method itself might be further improved by using a rational Krylov
subspace [3, [33] with the shift-and-invert technique [60]. Future research will be
directed toward an actual application of the time-parallel method, measuring
the performance benefit as function of problem size and number of processors.
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